metadata
base_model: openai/whisper-large-v2
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: >-
whisper-large-v2-ft-cv16-1__car145_ref-tms_e3n4-n4r2_owner12-copy2x-241212-v1
results: []
whisper-large-v2-ft-cv16-1__car145_ref-tms_e3n4-n4r2_owner12-copy2x-241212-v1
This model is a fine-tuned version of openai/whisper-large-v2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1178
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.7208 | 1.0 | 139 | 1.4782 |
0.6163 | 2.0 | 278 | 0.1211 |
0.1284 | 3.0 | 417 | 0.1084 |
0.1026 | 4.0 | 556 | 0.1070 |
0.085 | 5.0 | 695 | 0.1069 |
0.0714 | 6.0 | 834 | 0.1087 |
0.0617 | 7.0 | 973 | 0.1112 |
0.054 | 8.0 | 1112 | 0.1141 |
0.0482 | 9.0 | 1251 | 0.1163 |
0.0442 | 10.0 | 1390 | 0.1178 |
Framework versions
- PEFT 0.13.0
- Transformers 4.45.1
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.0