metadata
base_model: openai/whisper-large-v2
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: >-
whisper-large-v2-ft-cv16-1__car50-car50-e3n4-n4r2-r2n2-format_copy2x_voiceless-241216-v1
results: []
whisper-large-v2-ft-cv16-1__car50-car50-e3n4-n4r2-r2n2-format_copy2x_voiceless-241216-v1
This model is a fine-tuned version of openai/whisper-large-v2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1061
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.5518 | 1.0 | 70 | 2.3768 |
1.3291 | 2.0 | 140 | 0.1430 |
0.1495 | 3.0 | 210 | 0.1063 |
0.1171 | 4.0 | 280 | 0.1024 |
0.1009 | 5.0 | 350 | 0.1017 |
0.0894 | 6.0 | 420 | 0.1024 |
0.0801 | 7.0 | 490 | 0.1031 |
0.0727 | 8.0 | 560 | 0.1044 |
0.0682 | 9.0 | 630 | 0.1053 |
0.0648 | 10.0 | 700 | 0.1061 |
Framework versions
- PEFT 0.13.0
- Transformers 4.45.1
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.0