Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: sethuiyer/Medichat-Llama3-8B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 53e6aaee2c42fcb8_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/53e6aaee2c42fcb8_train_data.json
  type:
    field_instruction: prompt
    field_output: output
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: dzanbek/a1738836-ef16-4a64-a546-1c13bba7b69a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 76GiB
max_steps: 20
micro_batch_size: 2
mlflow_experiment_name: /tmp/53e6aaee2c42fcb8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 2048
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: a1738836-ef16-4a64-a546-1c13bba7b69a
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: a1738836-ef16-4a64-a546-1c13bba7b69a
warmup_steps: 10
weight_decay: 0.1
xformers_attention: true

a1738836-ef16-4a64-a546-1c13bba7b69a

This model is a fine-tuned version of sethuiyer/Medichat-Llama3-8B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3458

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 20

Training results

Training Loss Epoch Step Validation Loss
1.4037 0.0024 1 1.6662
1.8325 0.0049 2 1.6649
1.3973 0.0098 4 1.6588
1.821 0.0146 6 1.6285
1.4422 0.0195 8 1.5389
1.9976 0.0244 10 1.4313
0.8334 0.0293 12 1.4252
1.0563 0.0341 14 1.3921
1.3988 0.0390 16 1.3604
0.9456 0.0439 18 1.3483
1.46 0.0488 20 1.3458

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for dzanbek/a1738836-ef16-4a64-a546-1c13bba7b69a

Adapter
(240)
this model