Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: NousResearch/Yarn-Llama-2-13b-128k
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 3afaae177b8d133d_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/3afaae177b8d133d_train_data.json
  type:
    field_input: gpt-4-turbo
    field_instruction: question_dutch
    field_output: geitje-7b-ultra
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 256
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 32
gradient_checkpointing: true
group_by_length: false
hub_model_id: eddysang/7210d7ba-e1df-4c3a-8d5d-b52db831e48b
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 2
max_steps: 100
micro_batch_size: 2
mlflow_experiment_name: /tmp/3afaae177b8d133d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1.0e-05
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 2048
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: yaudayah0
wandb_mode: online
wandb_name: ac0c7e5a-5ba4-4583-a82d-56c11be76137
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ac0c7e5a-5ba4-4583-a82d-56c11be76137
warmup_steps: 20
weight_decay: 0.02
xformers_attention: false

7210d7ba-e1df-4c3a-8d5d-b52db831e48b

This model is a fine-tuned version of NousResearch/Yarn-Llama-2-13b-128k on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3076

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 20
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
No log 0.0065 1 1.5667
50.1503 0.0588 9 1.4883
45.6873 0.1175 18 1.4120
44.681 0.1763 27 1.3735
42.8971 0.2350 36 1.3519
42.5286 0.2938 45 1.3386
41.7679 0.3525 54 1.3290
41.8455 0.4113 63 1.3209
42.4707 0.4700 72 1.3143
43.16 0.5288 81 1.3105
41.9927 0.5875 90 1.3081
41.2947 0.6463 99 1.3076

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for eddysang/7210d7ba-e1df-4c3a-8d5d-b52db831e48b

Adapter
(170)
this model