|
--- |
|
tags: |
|
- autotrain |
|
- text-classification |
|
- bert |
|
- patent-deberta |
|
- patent-classification |
|
language: |
|
- en |
|
widget: |
|
- text: I love AutoTrain 🤗 |
|
datasets: |
|
- eeshan/autotrain-data-r-nr-categorization |
|
co2_eq_emissions: |
|
emissions: 17.1013640357776 |
|
license: apache-2.0 |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
--- |
|
|
|
# Model Trained Using AutoTrain |
|
|
|
- Problem type: Binary Classification |
|
- Model ID: 3075087647 |
|
- CO2 Emissions (in grams): 17.1014 |
|
|
|
## Validation Metrics |
|
|
|
- Loss: 0.000 |
|
- Accuracy: 1.000 |
|
- Precision: 1.000 |
|
- Recall: 1.000 |
|
- AUC: 1.000 |
|
- F1: 1.000 |
|
|
|
## Usage |
|
|
|
You can use cURL to access this model: |
|
|
|
``` |
|
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/eeshan/autotrain-r-nr-categorization-3075087647 |
|
``` |
|
|
|
Or Python API: |
|
|
|
``` |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained("eeshan/autotrain-r-nr-categorization-3075087647", use_auth_token=True) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("eeshan/autotrain-r-nr-categorization-3075087647", use_auth_token=True) |
|
|
|
inputs = tokenizer("I love AutoTrain", return_tensors="pt") |
|
|
|
outputs = model(**inputs) |
|
``` |