Edit model card

mBART-TextSimp-LT-BatchSize2-lr1e-4

This model is a fine-tuned version of facebook/mbart-large-50 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0962
  • Rouge1: 0.76
  • Rouge2: 0.6246
  • Rougel: 0.7508
  • Sacrebleu: 53.9078
  • Gen Len: 32.9976

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Sacrebleu Gen Len
0.0639 1.0 418 0.0779 0.7012 0.5432 0.6904 43.0798 32.9976
0.0653 2.0 836 0.0732 0.7197 0.5593 0.7091 44.8483 32.9976
0.0327 3.0 1254 0.0726 0.7319 0.5787 0.7206 47.842 32.9976
0.0168 4.0 1672 0.0782 0.7466 0.6031 0.7371 50.9225 32.9976
0.013 5.0 2090 0.0804 0.7507 0.6077 0.7409 51.8293 32.9976
0.0032 6.0 2508 0.0846 0.7606 0.6237 0.7507 53.5224 32.9976
0.0012 7.0 2926 0.0911 0.7597 0.6263 0.751 54.0182 32.9976
0.0012 8.0 3344 0.0962 0.76 0.6246 0.7508 53.9078 32.9976

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for eglkan1/mBART-TextSimp-LT-BatchSize2-lr1e-4

Finetuned
(127)
this model