Edit model card

mBART-TextSimp-LT-BatchSize4-lr1e-4

This model is a fine-tuned version of facebook/mbart-large-50 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0810
  • Rouge1: 0.8026
  • Rouge2: 0.6711
  • Rougel: 0.796
  • Sacrebleu: 55.7975
  • Gen Len: 33.3938

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Sacrebleu Gen Len
0.0978 1.0 209 0.0948 0.6734 0.5117 0.664 43.1877 33.3938
0.0617 2.0 418 0.0598 0.7702 0.6222 0.7609 49.5794 33.3938
1.1021 3.0 627 0.8158 0.0161 0.0 0.0162 0.0009 34.3938
0.0471 4.0 836 0.0822 0.6874 0.5335 0.6779 44.9573 33.3938
0.0276 5.0 1045 0.0664 0.7767 0.6339 0.7686 52.2135 33.3938
0.0162 6.0 1254 0.0756 0.7856 0.6452 0.7796 50.4352 33.3938
0.0069 7.0 1463 0.0796 0.7939 0.6586 0.7877 52.9489 33.3938
0.0051 8.0 1672 0.0810 0.8026 0.6711 0.796 55.7975 33.3938

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for eglkan1/mBART-TextSimp-LT-BatchSize4-lr1e-4

Finetuned
(127)
this model