|
import os |
|
|
|
from modules import scripts_postprocessing, devices, scripts, ui_components |
|
import gradio as gr |
|
|
|
from modules.ui_components import FormRow |
|
|
|
import torch |
|
import torchvision.transforms as transforms |
|
from PIL import Image |
|
import numpy as np |
|
|
|
from pixelization.models.networks import define_G |
|
import pixelization.models.c2pGen |
|
import gdown |
|
|
|
pixelize_code = [ |
|
233356.8125, -27387.5918, -32866.8008, 126575.0312, -181590.0156, |
|
-31543.1289, 50374.1289, 99631.4062, -188897.3750, 138322.7031, |
|
-107266.2266, 125778.5781, 42416.1836, 139710.8594, -39614.6250, |
|
-69972.6875, -21886.4141, 86938.4766, 31457.6270, -98892.2344, |
|
-1191.5887, -61662.1719, -180121.9062, -32931.0859, 43109.0391, |
|
21490.1328, -153485.3281, 94259.1797, 43103.1992, -231953.8125, |
|
52496.7422, 142697.4062, -34882.7852, -98740.0625, 34458.5078, |
|
-135436.3438, 11420.5488, -18895.8984, -71195.4141, 176947.2344, |
|
-52747.5742, 109054.6562, -28124.9473, -17736.6152, -41327.1562, |
|
69853.3906, 79046.2656, -3923.7344, -5644.5229, 96586.7578, |
|
-89315.2656, -146578.0156, -61862.1484, -83956.4375, 87574.5703, |
|
-75055.0469, 19571.8203, 79358.7891, -16501.5000, -147169.2188, |
|
-97861.6797, 60442.1797, 40156.9023, 223136.3906, -81118.0547, |
|
-221443.6406, 54911.6914, 54735.9258, -58805.7305, -168884.4844, |
|
40865.9609, -28627.9043, -18604.7227, 120274.6172, 49712.2383, |
|
164402.7031, -53165.0820, -60664.0469, -97956.1484, -121468.4062, |
|
-69926.1484, -4889.0151, 127367.7344, 200241.0781, -85817.7578, |
|
-143190.0625, -74049.5312, 137980.5781, -150788.7656, -115719.6719, |
|
-189250.1250, -153069.7344, -127429.7891, -187588.2500, 125264.7422, |
|
-79082.3438, -114144.5781, 36033.5039, -57502.2188, 80488.1562, |
|
36501.4570, -138817.5938, -22189.6523, -222146.9688, -73292.3984, |
|
127717.2422, -183836.3750, -105907.0859, 145422.8750, 66981.2031, |
|
-9596.6699, 78099.4922, 70226.3359, 35841.8789, -116117.6016, |
|
-150986.0156, 81622.4922, 113575.0625, 154419.4844, 53586.4141, |
|
118494.8750, 131625.4375, -19763.1094, 75581.1172, -42750.5039, |
|
97934.8281, 6706.7949, -101179.0078, 83519.6172, -83054.8359, |
|
-56749.2578, -30683.6992, 54615.9492, 84061.1406, -229136.7188, |
|
-60554.0000, 8120.2622, -106468.7891, -28316.3418, -166351.3125, |
|
47797.3984, 96013.4141, 71482.9453, -101429.9297, 209063.3594, |
|
-3033.6882, -38952.5352, -84920.6719, -5895.1543, -18641.8105, |
|
47884.3633, -14620.0273, -132898.6719, -40903.5859, 197217.3750, |
|
-128599.1328, -115397.8906, -22670.7676, -78569.9688, -54559.7070, |
|
-106855.2031, 40703.1484, 55568.3164, 60202.9844, -64757.9375, |
|
-32068.8652, 160663.3438, 72187.0703, -148519.5469, 162952.8906, |
|
-128048.2031, -136153.8906, -15270.3730, -52766.3281, -52517.4531, |
|
18652.1992, 195354.2188, -136657.3750, -8034.2622, -92699.6016, |
|
-129169.1406, 188479.9844, 46003.7500, -93383.0781, -67831.6484, |
|
-66710.5469, 104338.5234, 85878.8438, -73165.2031, 95857.3203, |
|
71213.1250, 94603.1094, -30359.8125, -107989.2578, 99822.1719, |
|
184626.3594, 79238.4531, -272978.9375, -137948.5781, -145245.8125, |
|
75359.2031, 26652.7930, 50421.4141, 60784.4102, -18286.3398, |
|
-182851.9531, -87178.7969, -13131.7539, 195674.8906, 59951.7852, |
|
124353.7422, -36709.1758, -54575.4766, 77822.6953, 43697.4102, |
|
-64394.3438, 113281.1797, -93987.0703, 221989.7188, 132902.5000, |
|
-9538.8574, -14594.1338, 65084.9453, -12501.7227, 130330.6875, |
|
-115123.4766, 20823.0898, 75512.4922, -75255.7422, -41936.7656, |
|
-186678.8281, -166799.9375, 138770.6250, -78969.9531, 124516.8047, |
|
-85558.5781, -69272.4375, -115539.1094, 228774.4844, -76529.3281, |
|
-107735.8906, -76798.8906, -194335.2812, 56530.5742, -9397.7529, |
|
132985.8281, 163929.8438, -188517.7969, -141155.6406, 45071.0391, |
|
207788.3125, -125826.1172, 8965.3320, -159584.8438, 95842.4609, |
|
-76929.4688 |
|
] |
|
|
|
path_checkpoints = os.path.join(scripts.basedir(), "checkpoints") |
|
path_pixelart_vgg19 = os.path.join(path_checkpoints, "pixelart_vgg19.pth") |
|
path_160_net_G_A = os.path.join(path_checkpoints, "160_net_G_A.pth") |
|
path_alias_net = os.path.join(path_checkpoints, "alias_net.pth") |
|
|
|
|
|
class TorchHijackForC2pGen: |
|
def __getattr__(self, item): |
|
if item == 'load': |
|
return self.load |
|
|
|
if hasattr(torch, item): |
|
return getattr(torch, item) |
|
|
|
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item)) |
|
|
|
def load(self, filename, *args, **kwargs): |
|
if filename == "./pixelart_vgg19.pth": |
|
filename = path_pixelart_vgg19 |
|
|
|
return torch.load(filename, *args, **kwargs) |
|
|
|
|
|
pixelization.models.c2pGen.torch = TorchHijackForC2pGen() |
|
|
|
|
|
class Model(torch.nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
self.G_A_net = None |
|
self.alias_net = None |
|
|
|
def load(self): |
|
os.makedirs(path_checkpoints, exist_ok=True) |
|
|
|
missing = False |
|
|
|
models = ( |
|
(path_pixelart_vgg19, "https://drive.google.com/uc?id=1VRYKQOsNlE1w1LXje3yTRU5THN2MGdMM"), |
|
(path_160_net_G_A, "https://drive.google.com/uc?id=1i_8xL3stbLWNF4kdQJ50ZhnRFhSDh3Az"), |
|
(path_alias_net, "https://drive.google.com/uc?id=17f2rKnZOpnO9ATwRXgqLz5u5AZsyDvq_"), |
|
) |
|
|
|
for path, url in models: |
|
if not os.path.exists(path): |
|
gdown.download(url, path) |
|
|
|
if not os.path.exists(path): |
|
missing = True |
|
|
|
assert not missing, f'Missing checkpoints for pixelization - see console for download links. Download checkpoints manually and place them in {path_checkpoints}.' |
|
|
|
with torch.no_grad(): |
|
self.G_A_net = define_G(3, 3, 64, "c2pGen", "instance", False, "normal", 0.02, [0]) |
|
self.alias_net = define_G(3, 3, 64, "antialias", "instance", False, "normal", 0.02, [0]) |
|
|
|
G_A_state = torch.load(path_160_net_G_A) |
|
for p in list(G_A_state.keys()): |
|
G_A_state["module." + str(p)] = G_A_state.pop(p) |
|
self.G_A_net.load_state_dict(G_A_state) |
|
|
|
alias_state = torch.load(path_alias_net) |
|
for p in list(alias_state.keys()): |
|
alias_state["module." + str(p)] = alias_state.pop(p) |
|
self.alias_net.load_state_dict(alias_state) |
|
|
|
|
|
def process(img): |
|
ow, oh = img.size |
|
|
|
nw = int(round(ow / 4) * 4) |
|
nh = int(round(oh / 4) * 4) |
|
|
|
left = (ow - nw) // 2 |
|
top = (oh - nh) // 2 |
|
right = left + nw |
|
bottom = top + nh |
|
|
|
img = img.crop((left, top, right, bottom)) |
|
|
|
trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) |
|
|
|
return trans(img)[None, :, :, :] |
|
|
|
|
|
def to_image(tensor, pixel_size, upscale_after): |
|
img = tensor.data[0].cpu().float().numpy() |
|
img = (np.transpose(img, (1, 2, 0)) + 1) / 2.0 * 255.0 |
|
img = img.astype(np.uint8) |
|
img = Image.fromarray(img) |
|
img = img.resize((img.size[0]//4, img.size[1]//4), resample=Image.Resampling.NEAREST) |
|
if upscale_after: |
|
img = img.resize((img.size[0]*pixel_size, img.size[1]*pixel_size), resample=Image.Resampling.NEAREST) |
|
|
|
return img |
|
|
|
|
|
class ScriptPostprocessingUpscale(scripts_postprocessing.ScriptPostprocessing): |
|
name = "Pixelization" |
|
order = 10000 |
|
model = None |
|
|
|
def ui(self): |
|
with ui_components.InputAccordion(False, label="Pixelize") as enable: |
|
with gr.Row(): |
|
upscale_after = gr.Checkbox(False, label="Keep resolution") |
|
pixel_size = gr.Slider(minimum=1, maximum=16, step=1, label="Pixel size", value=4, elem_id="pixelization_pixel_size") |
|
|
|
return { |
|
"enable": enable, |
|
"upscale_after": upscale_after, |
|
"pixel_size": pixel_size, |
|
} |
|
|
|
def process(self, pp: scripts_postprocessing.PostprocessedImage, enable, upscale_after, pixel_size): |
|
if not enable: |
|
return |
|
|
|
if self.model is None: |
|
model = Model() |
|
model.load() |
|
|
|
self.model = model |
|
|
|
self.model.to(devices.device) |
|
|
|
pp.image = pp.image.resize((pp.image.width * 4 // pixel_size, pp.image.height * 4 // pixel_size)) |
|
|
|
with torch.no_grad(): |
|
in_t = process(pp.image).to(devices.device) |
|
|
|
feature = self.model.G_A_net.module.RGBEnc(in_t) |
|
code = torch.asarray(pixelize_code, device=devices.device).reshape((1, 256, 1, 1)) |
|
adain_params = self.model.G_A_net.module.MLP(code) |
|
images = self.model.G_A_net.module.RGBDec(feature, adain_params) |
|
out_t = self.model.alias_net(images) |
|
|
|
pp.image = to_image(out_t, pixel_size=pixel_size, upscale_after=upscale_after) |
|
|
|
self.model.to(devices.cpu) |
|
|
|
pp.info["Pixelization pixel size"] = pixel_size |
|
|
|
|