|
--- |
|
library_name: setfit |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
metrics: |
|
- accuracy |
|
widget: |
|
- text: ' i still dont know what we would do though' |
|
- text: ' where`d you go!' |
|
- text: ' Thank you! I`m working on `s' |
|
- text: Terminator Salvation... by myself. |
|
- text: ' lol man i got 2 1 /2 hrs an iont how i woulda made it wit out my ramen noodles |
|
and t.v. Time' |
|
pipeline_tag: text-classification |
|
inference: true |
|
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
model-index: |
|
- name: SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.79 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 128 tokens |
|
- **Number of Classes:** 3 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 0 | <ul><li>'چه سودایی که سر همینا از دست دادم😂'</li><li>'خو فارسی بنویس بفهمه 😂😂😂😂😂'</li><li>'اینجا ایران همین سایتا هم\u200cزیادی..نیازی به بررسی ندارن...کلا دوسداریم به همچی ایراد بگیریم.'</li></ul> | |
|
| 1 | <ul><li>'کد کارت مشکی NHKDKI'</li><li>'اتفاقا مسیولیت بیشتری برات میاره و درگیریات بیشتر میشه برای هدفی که داری'</li><li>'من میخام شروع کنم،اورج بفروشم یا فیک؟فیک ارزونتره ولی فیکه.اورجینال هم ک گرون تره ؟بنظرت اورج میخرن؟؟'</li></ul> | |
|
| 2 | <ul><li>'🔥🔥🔥🔥'</li><li>'😂😂😂'</li><li>'چه قدر عالی وخفن 🔥🔥'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 0.79 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("ehsanhallo/setfit-paraphrase-multilingual-MiniLM-L12-v2-ig-fa") |
|
# Run inference |
|
preds = model(" where`d you go!") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 1 | 6.4184 | 75 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0 | 69 | |
|
| 1 | 238 | |
|
| 2 | 551 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (32, 16) |
|
- num_epochs: (1, 2) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- body_learning_rate: (2e-05, 5e-06) |
|
- head_learning_rate: 0.002 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- l2_weight: 0.01 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: True |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:----------:|:--------:|:-------------:|:---------------:| |
|
| 0.0001 | 1 | 0.1767 | - | |
|
| 0.0216 | 250 | 0.1513 | - | |
|
| 0.0431 | 500 | 0.0629 | 0.2389 | |
|
| 0.0647 | 750 | 0.0351 | - | |
|
| 0.0862 | 1000 | 0.0015 | 0.1886 | |
|
| 0.1078 | 1250 | 0.0003 | - | |
|
| 0.1293 | 1500 | 0.0004 | 0.1813 | |
|
| 0.1509 | 1750 | 0.0002 | - | |
|
| **0.1724** | **2000** | **0.0002** | **0.1807** | |
|
| 0.1940 | 2250 | 0.0001 | - | |
|
| 0.2155 | 2500 | 0.0001 | 0.187 | |
|
| 0.2371 | 2750 | 0.0001 | - | |
|
| 0.2586 | 3000 | 0.0001 | 0.1903 | |
|
| 0.2802 | 3250 | 0.0001 | - | |
|
| 0.3018 | 3500 | 0.0 | 0.1864 | |
|
| 0.3233 | 3750 | 0.0 | - | |
|
| 0.3449 | 4000 | 0.0 | 0.193 | |
|
| 0.3664 | 4250 | 0.0 | - | |
|
| 0.3880 | 4500 | 0.0 | 0.1879 | |
|
| 0.4095 | 4750 | 0.0 | - | |
|
| 0.4311 | 5000 | 0.0 | 0.1887 | |
|
| 0.4526 | 5250 | 0.0 | - | |
|
| 0.4742 | 5500 | 0.0 | 0.187 | |
|
| 0.4957 | 5750 | 0.0 | - | |
|
| 0.5173 | 6000 | 0.0001 | 0.205 | |
|
| 0.5388 | 6250 | 0.0 | - | |
|
| 0.5604 | 6500 | 0.0 | 0.205 | |
|
| 0.5819 | 6750 | 0.0 | - | |
|
| 0.6035 | 7000 | 0.0 | 0.2018 | |
|
| 0.6251 | 7250 | 0.0 | - | |
|
| 0.6466 | 7500 | 0.0 | 0.2022 | |
|
| 0.6682 | 7750 | 0.0 | - | |
|
| 0.6897 | 8000 | 0.0 | 0.2063 | |
|
| 0.7113 | 8250 | 0.0 | - | |
|
| 0.7328 | 8500 | 0.0 | 0.2143 | |
|
| 0.7544 | 8750 | 0.0 | - | |
|
| 0.7759 | 9000 | 0.0 | 0.2206 | |
|
| 0.7975 | 9250 | 0.0 | - | |
|
| 0.8190 | 9500 | 0.0 | 0.2167 | |
|
| 0.8406 | 9750 | 0.0 | - | |
|
| 0.8621 | 10000 | 0.0 | 0.2176 | |
|
| 0.8837 | 10250 | 0.0 | - | |
|
| 0.9053 | 10500 | 0.0 | 0.217 | |
|
| 0.9268 | 10750 | 0.0 | - | |
|
| 0.9484 | 11000 | 0.0 | 0.2153 | |
|
| 0.9699 | 11250 | 0.0 | - | |
|
| 0.9915 | 11500 | 0.0 | 0.2137 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.0.1 |
|
- Sentence Transformers: 2.2.2 |
|
- Transformers: 4.35.2 |
|
- PyTorch: 2.1.0+cu121 |
|
- Datasets: 2.16.1 |
|
- Tokenizers: 0.15.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |