See axolotl config
axolotl version: 0.4.0
base_model: openlm-research/open_llama_3b_v2
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
push_dataset_to_hub:
datasets:
- path: teknium/GPT4-LLM-Cleaned
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
adapter: qlora
lora_model_dir:
sequence_len: 1024
sample_packing: true
lora_r: 8
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
output_dir: ./qlora-out
gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 4
optimizer: paged_adamw_32bit
torchdistx_path:
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: false
fp16: true
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
gptq_groupsize:
gptq_model_v1:
warmup_steps: 20
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
qlora-out
This model is a fine-tuned version of openlm-research/open_llama_3b_v2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0305
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.3161 | 0.0 | 1 | 1.5593 |
1.1396 | 0.25 | 655 | 1.0154 |
1.107 | 0.5 | 1310 | 0.9923 |
1.1086 | 0.75 | 1965 | 0.9727 |
0.9957 | 1.0 | 2620 | 0.9599 |
1.0171 | 1.23 | 3275 | 0.9603 |
0.7529 | 1.48 | 3930 | 0.9561 |
1.1053 | 1.73 | 4585 | 0.9523 |
0.8667 | 1.98 | 5240 | 0.9470 |
0.8547 | 2.21 | 5895 | 0.9852 |
0.8283 | 2.46 | 6550 | 0.9837 |
1.0088 | 2.71 | 7205 | 0.9850 |
0.8609 | 2.96 | 7860 | 0.9807 |
0.8617 | 3.19 | 8515 | 1.0244 |
0.4939 | 3.44 | 9170 | 1.0304 |
0.6502 | 3.7 | 9825 | 1.0305 |
Framework versions
- PEFT 0.10.0
- Transformers 4.40.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.18.0
- Tokenizers 0.15.0
- Downloads last month
- 0
Model tree for ehznapsxm/projectqwer
Base model
openlm-research/open_llama_3b_v2