Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: openlm-research/open_llama_3b_v2
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
push_dataset_to_hub:
datasets:
  - path: teknium/GPT4-LLM-Cleaned
    type: alpaca
dataset_prepared_path:
val_set_size: 0.05
adapter: qlora
lora_model_dir:
sequence_len: 1024
sample_packing: true
lora_r: 8
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
output_dir: ./qlora-out
gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 4
optimizer: paged_adamw_32bit
torchdistx_path:
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: false
fp16: true
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
gptq_groupsize:
gptq_model_v1:
warmup_steps: 20
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"

qlora-out

This model is a fine-tuned version of openlm-research/open_llama_3b_v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0305

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 4
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 20
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.3161 0.0 1 1.5593
1.1396 0.25 655 1.0154
1.107 0.5 1310 0.9923
1.1086 0.75 1965 0.9727
0.9957 1.0 2620 0.9599
1.0171 1.23 3275 0.9603
0.7529 1.48 3930 0.9561
1.1053 1.73 4585 0.9523
0.8667 1.98 5240 0.9470
0.8547 2.21 5895 0.9852
0.8283 2.46 6550 0.9837
1.0088 2.71 7205 0.9850
0.8609 2.96 7860 0.9807
0.8617 3.19 8515 1.0244
0.4939 3.44 9170 1.0304
0.6502 3.7 9825 1.0305

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.0.dev0
  • Pytorch 2.1.2+cu118
  • Datasets 2.18.0
  • Tokenizers 0.15.0
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for ehznapsxm/projectqwer

Adapter
(66)
this model