|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: MarianMix_en-10 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# MarianMix_en-10 |
|
|
|
This model is a fine-tuned version of [Helsinki-NLP/opus-tatoeba-en-ja](https://huggingface.co/Helsinki-NLP/opus-tatoeba-en-ja) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1639 |
|
- Bleu: 15.2673 |
|
- Gen Len: 50.7578 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 99 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| |
|
| 2.2528 | 0.44 | 500 | 2.3059 | 0.2046 | 68.5206 | |
|
| 1.2562 | 0.89 | 1000 | 1.9629 | 1.2393 | 61.1236 | |
|
| 1.0764 | 1.33 | 1500 | 1.6859 | 4.1958 | 57.1075 | |
|
| 0.95 | 1.78 | 2000 | 1.5075 | 6.683 | 55.8533 | |
|
| 0.8486 | 2.22 | 2500 | 1.3848 | 9.3923 | 53.5568 | |
|
| 0.7887 | 2.67 | 3000 | 1.3047 | 11.7962 | 53.6583 | |
|
| 0.7488 | 3.11 | 3500 | 1.2574 | 12.8451 | 54.3196 | |
|
| 0.692 | 3.56 | 4000 | 1.2154 | 13.6083 | 51.0131 | |
|
| 0.6795 | 4.0 | 4500 | 1.1881 | 14.7516 | 51.6563 | |
|
| 0.6375 | 4.45 | 5000 | 1.1714 | 15.1401 | 51.5437 | |
|
| 0.6332 | 4.89 | 5500 | 1.1639 | 15.2673 | 50.7578 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.12.5 |
|
- Pytorch 1.9.1 |
|
- Datasets 1.17.0 |
|
- Tokenizers 0.10.3 |
|
|