|
--- |
|
license: mit |
|
base_model: facebook/bart-large-cnn |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
datasets: |
|
- tldr_news |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: summary_model |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: tldr_news |
|
type: tldr_news |
|
config: all |
|
split: test |
|
args: all |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 0.21590240799799404 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# summary_model |
|
|
|
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the tldr_news dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.9573 |
|
- Rouge1: 0.2159 |
|
- Rouge2: 0.0831 |
|
- Rougel: 0.1829 |
|
- Rougelsum: 0.1869 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 0.5871 | 1.0 | 63 | 2.7134 | 0.2176 | 0.0872 | 0.1881 | 0.1951 | |
|
| 0.4422 | 2.0 | 126 | 2.9573 | 0.2159 | 0.0831 | 0.1829 | 0.1869 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|