You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

AraBert_arabic_keyword_extraction

This model is a fine-tuned version of aubmindlab/bert-base-arabertv2n) on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4622
  • Precision: 0.5583
  • Recall: 0.6294
  • F1: 0.5917
  • Accuracy: 0.9297

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2524 1.0 750 0.1969 0.3638 0.4022 0.3820 0.9161
0.1705 2.0 1500 0.1793 0.4424 0.4749 0.4581 0.9240
0.1386 3.0 2250 0.1834 0.4547 0.5438 0.4953 0.9240
0.1091 4.0 3000 0.1987 0.4805 0.5650 0.5193 0.9243
0.0892 5.0 3750 0.2164 0.4951 0.5661 0.5282 0.9259
0.0737 6.0 4500 0.2130 0.5101 0.5635 0.5355 0.9282
0.0579 7.0 5250 0.2301 0.4890 0.5810 0.5311 0.9266
0.0481 8.0 6000 0.2479 0.5025 0.6041 0.5486 0.9269
0.0411 9.0 6750 0.2496 0.5353 0.5739 0.5539 0.9298
0.0348 10.0 7500 0.2719 0.5150 0.6063 0.5570 0.9286
0.0304 11.0 8250 0.2881 0.5252 0.6015 0.5608 0.9283
0.0258 12.0 9000 0.3088 0.5129 0.6093 0.5569 0.9266
0.0231 13.0 9750 0.3110 0.5230 0.5922 0.5555 0.9284
0.0199 14.0 10500 0.3196 0.5243 0.6030 0.5609 0.9282
0.0188 15.0 11250 0.3194 0.5169 0.6041 0.5571 0.9279
0.0146 16.0 750 0.3524 0.5119 0.5993 0.5522 0.9237
0.011 17.0 1500 0.3849 0.4895 0.6410 0.5551 0.9214
0.0087 18.0 2250 0.3469 0.5353 0.6153 0.5725 0.9311
0.0113 19.0 3000 0.3471 0.5150 0.6212 0.5631 0.9268
0.0088 20.0 3750 0.3677 0.5493 0.5929 0.5703 0.9302
0.0068 21.0 4500 0.3867 0.5313 0.6071 0.5667 0.9270
0.0056 22.0 5250 0.3843 0.5435 0.6186 0.5786 0.9293
0.0049 23.0 6000 0.4145 0.5491 0.6272 0.5855 0.9295
0.0043 24.0 6750 0.4290 0.5396 0.6339 0.5830 0.9280
0.0035 25.0 7500 0.4532 0.5322 0.6369 0.5799 0.9274
0.0033 26.0 8250 0.4273 0.5570 0.6227 0.5880 0.9309
0.0032 27.0 9000 0.4415 0.5541 0.6317 0.5903 0.9297
0.0025 28.0 9750 0.4509 0.5518 0.6272 0.5871 0.9291
0.0021 29.0 10500 0.4652 0.5668 0.6179 0.5912 0.9308
0.0026 30.0 11250 0.4622 0.5583 0.6294 0.5917 0.9297

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
0
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for elnasharomar2/AraBert_arabic_keyword_extraction

Unable to build the model tree, the base model loops to the model itself. Learn more.