elnasharomar2's picture
Update README.md
440a13d
metadata
license: cc-by-nc-3.0
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: roberta-large-NER_keyword_oknashar
    results: []

roberta-large-NER_keyword_oknashar

This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2412
  • Precision: 0.7773
  • Recall: 0.7947
  • F1: 0.7859
  • Accuracy: 0.9732

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.007 1 2714 0.2217 0.7532 0.7489 0.7510 0.9705
0.0056 2 5428 0.2128 0.7281 0.7752 0.7509 0.9701
0.008 3 8142 0.2351 0.7650 0.7821 0.7735 0.9713
0.008 4 10856 0.2183 0.7579 0.7792 0.7684 0.9716
0.0061 5 2714 0.2430 0.7534 0.7219 0.7373 0.9692
0.0061 6 5428 0.2506 0.7570 0.7752 0.7660 0.9716
0.013 7 8142 0.2322 0.7583 0.7557 0.7570 0.9708
0.0085 8 10856 0.2129 0.7616 0.7838 0.7725 0.9721
0.002 9 13570 0.2259 0.7683 0.7815 0.7749 0.9724
0.0071 10 2714 0.2433 0.7619 0.7506 0.7562 0.9707
0.0071 11 5428 0.2490 0.7456 0.7615 0.7535 0.9699
0.0035 12 8142 0.2483 0.7788 0.7873 0.7830 0.9727
0.002 13 10856 0.2412 0.7773 0.7947 0.7859 0.9732

Framework versions

  • Transformers 4.35.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1