distilbert-base-uncased_fold_4_binary

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2977
  • F1: 0.8083

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss F1
No log 1.0 289 0.3701 0.7903
0.4005 2.0 578 0.3669 0.7994
0.4005 3.0 867 0.5038 0.7955
0.1945 4.0 1156 0.6353 0.8006
0.1945 5.0 1445 0.8974 0.7826
0.0909 6.0 1734 0.8533 0.7764
0.0389 7.0 2023 0.9969 0.7957
0.0389 8.0 2312 1.0356 0.7952
0.0231 9.0 2601 1.1538 0.7963
0.0231 10.0 2890 1.2011 0.7968
0.0051 11.0 3179 1.2329 0.7935
0.0051 12.0 3468 1.2829 0.8056
0.0066 13.0 3757 1.2946 0.7956
0.004 14.0 4046 1.2977 0.8083
0.004 15.0 4335 1.3970 0.7957
0.0007 16.0 4624 1.3361 0.7917
0.0007 17.0 4913 1.5782 0.7954
0.0107 18.0 5202 1.4641 0.7900
0.0107 19.0 5491 1.4490 0.7957
0.0058 20.0 5780 1.4607 0.7932
0.0016 21.0 6069 1.5048 0.7939
0.0016 22.0 6358 1.5219 0.7945
0.0027 23.0 6647 1.4783 0.7937
0.0027 24.0 6936 1.4715 0.7981
0.0004 25.0 7225 1.4989 0.7900

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
4
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.