distilbert-base-uncased_fold_5_binary

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5093
  • F1: 0.7801

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss F1
No log 1.0 288 0.4760 0.7315
0.3992 2.0 576 0.4428 0.7785
0.3992 3.0 864 0.5093 0.7801
0.2021 4.0 1152 0.6588 0.7634
0.2021 5.0 1440 0.9174 0.7713
0.0945 6.0 1728 0.9832 0.7726
0.0321 7.0 2016 1.2103 0.7672
0.0321 8.0 2304 1.3759 0.7616
0.0134 9.0 2592 1.4405 0.7570
0.0134 10.0 2880 1.4591 0.7710
0.0117 11.0 3168 1.4947 0.7713
0.0117 12.0 3456 1.6224 0.7419
0.0081 13.0 3744 1.6462 0.7520
0.0083 14.0 4032 1.6880 0.7637
0.0083 15.0 4320 1.7080 0.7380
0.0048 16.0 4608 1.7352 0.7551
0.0048 17.0 4896 1.6761 0.7713
0.0024 18.0 5184 1.7553 0.76
0.0024 19.0 5472 1.7312 0.7673
0.005 20.0 5760 1.7334 0.7713
0.0032 21.0 6048 1.7963 0.7578
0.0032 22.0 6336 1.7529 0.7679
0.0025 23.0 6624 1.7741 0.7662
0.0025 24.0 6912 1.7515 0.7679
0.0004 25.0 7200 1.7370 0.7765

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
105
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.