embaas/sentence-transformers-e5-large-v2

This is a the sentence-transformers version of the intfloat/e5-large-v2 model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('embaas/sentence-transformers-e5-large-v2')
embeddings = model.encode(sentences)
print(embeddings)

Using with API

You can use the embaas API to encode your input. Get your free API key from embaas.io

import requests
 
url = "https://api.embaas.io/v1/embeddings/"
 
headers = {
    "Content-Type": "application/json",
    "Authorization": "Bearer ${YOUR_API_KEY}"
}
 
data = {
    "texts": ["This is an example sentence.", "Here is another sentence."],
    "instruction": "query"
    "model": "e5-large-v2"
}
 
response = requests.post(url, json=data, headers=headers)

Evaluation Results

Find the results of the e5 at the MTEB leaderboard

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
  (2): Normalize()
)

Citing & Authors

Downloads last month
34,559
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.