|
--- |
|
license: apache-2.0 |
|
base_model: emilstabil/DanSumT5-baseV_38821 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: DanSumT5-baseV_38821V_41166 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# DanSumT5-baseV_38821V_41166 |
|
|
|
This model is a fine-tuned version of [emilstabil/DanSumT5-baseV_38821](https://huggingface.co/emilstabil/DanSumT5-baseV_38821) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.1413 |
|
- Rouge1: 35.0654 |
|
- Rouge2: 11.6563 |
|
- Rougel: 21.7686 |
|
- Rougelsum: 27.7516 |
|
- Gen Len: 126.3262 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| |
|
| No log | 1.0 | 232 | 2.1957 | 34.7339 | 11.6712 | 21.4644 | 27.6817 | 126.4592 | |
|
| No log | 2.0 | 465 | 2.1830 | 34.8759 | 12.139 | 21.5278 | 27.3465 | 126.4549 | |
|
| 2.2462 | 3.0 | 697 | 2.1705 | 35.3017 | 12.4909 | 21.9387 | 28.2423 | 126.4807 | |
|
| 2.2462 | 4.0 | 930 | 2.1654 | 34.8508 | 11.4696 | 21.4196 | 27.6267 | 126.279 | |
|
| 2.1581 | 5.0 | 1162 | 2.1613 | 35.223 | 12.1452 | 21.8105 | 28.3086 | 126.6094 | |
|
| 2.1581 | 6.0 | 1395 | 2.1515 | 35.5785 | 12.0532 | 21.9575 | 28.5902 | 126.7082 | |
|
| 2.0992 | 7.0 | 1627 | 2.1560 | 35.1162 | 11.7299 | 21.6834 | 28.0683 | 126.3562 | |
|
| 2.0992 | 8.0 | 1860 | 2.1519 | 35.286 | 11.9648 | 21.8717 | 28.0591 | 126.5193 | |
|
| 2.0477 | 9.0 | 2092 | 2.1471 | 34.9886 | 11.763 | 21.5827 | 27.9164 | 126.5622 | |
|
| 2.0477 | 10.0 | 2325 | 2.1454 | 35.23 | 11.9011 | 21.891 | 28.0888 | 126.2403 | |
|
| 1.9999 | 11.0 | 2557 | 2.1462 | 35.2311 | 12.1353 | 22.1785 | 28.2209 | 126.1803 | |
|
| 1.9999 | 12.0 | 2790 | 2.1411 | 35.0426 | 11.81 | 21.9802 | 28.0833 | 126.515 | |
|
| 1.9791 | 13.0 | 3022 | 2.1417 | 34.8836 | 11.419 | 21.6238 | 27.6304 | 126.6738 | |
|
| 1.9791 | 14.0 | 3255 | 2.1459 | 35.0771 | 11.8678 | 21.9378 | 27.9312 | 126.2918 | |
|
| 1.9791 | 15.0 | 3487 | 2.1409 | 34.9493 | 11.9437 | 21.8772 | 28.0146 | 126.3562 | |
|
| 1.9495 | 16.0 | 3720 | 2.1411 | 35.1092 | 11.8562 | 21.9693 | 28.0417 | 126.1502 | |
|
| 1.9495 | 17.0 | 3952 | 2.1408 | 35.3591 | 12.0079 | 22.0824 | 28.0746 | 126.3176 | |
|
| 1.9391 | 18.0 | 4185 | 2.1414 | 35.1091 | 11.904 | 21.9597 | 27.9814 | 126.1373 | |
|
| 1.9391 | 19.0 | 4417 | 2.1422 | 35.2336 | 12.013 | 22.0223 | 27.8814 | 126.3004 | |
|
| 1.9139 | 19.96 | 4640 | 2.1413 | 35.0654 | 11.6563 | 21.7686 | 27.7516 | 126.3262 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.1 |
|
- Pytorch 2.1.0 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|