|
import torch |
|
from torch import nn |
|
|
|
from einops import rearrange, repeat |
|
from einops.layers.torch import Rearrange |
|
|
|
|
|
|
|
|
|
def pair(t): |
|
return t if isinstance(t, tuple) else (t, t) |
|
|
|
|
|
|
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, dim, hidden_dim, dropout=0.0): |
|
super().__init__() |
|
self.net = nn.Sequential( |
|
nn.LayerNorm(dim), |
|
nn.Linear(dim, hidden_dim), |
|
nn.GELU(), |
|
nn.Dropout(dropout), |
|
nn.Linear(hidden_dim, dim), |
|
nn.Dropout(dropout), |
|
) |
|
|
|
def forward(self, x): |
|
return self.net(x) |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, dim, heads=8, dim_head=64, dropout=0.0): |
|
super().__init__() |
|
inner_dim = dim_head * heads |
|
project_out = not (heads == 1 and dim_head == dim) |
|
|
|
self.heads = heads |
|
self.scale = dim_head**-0.5 |
|
|
|
self.norm = nn.LayerNorm(dim) |
|
|
|
self.attend = nn.Softmax(dim=-1) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False) |
|
|
|
self.to_out = ( |
|
nn.Sequential(nn.Linear(inner_dim, dim), nn.Dropout(dropout)) |
|
if project_out |
|
else nn.Identity() |
|
) |
|
|
|
def forward(self, x): |
|
x = self.norm(x) |
|
|
|
qkv = self.to_qkv(x).chunk(3, dim=-1) |
|
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=self.heads), qkv) |
|
|
|
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale |
|
|
|
attn = self.attend(dots) |
|
attn = self.dropout(attn) |
|
|
|
out = torch.matmul(attn, v) |
|
out = rearrange(out, "b h n d -> b n (h d)") |
|
return self.to_out(out) |
|
|
|
|
|
class Transformer(nn.Module): |
|
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout=0.0): |
|
super().__init__() |
|
self.norm = nn.LayerNorm(dim) |
|
self.layers = nn.ModuleList([]) |
|
for _ in range(depth): |
|
self.layers.append( |
|
nn.ModuleList( |
|
[ |
|
Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout), |
|
FeedForward(dim, mlp_dim, dropout=dropout), |
|
] |
|
) |
|
) |
|
|
|
def forward(self, x): |
|
for attn, ff in self.layers: |
|
x = attn(x) + x |
|
x = ff(x) + x |
|
|
|
return self.norm(x) |
|
|
|
|
|
class ViT(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
image_size, |
|
patch_size, |
|
num_classes, |
|
dim, |
|
depth, |
|
heads, |
|
mlp_dim, |
|
pool="cls", |
|
channels=3, |
|
dim_head=64, |
|
dropout=0.01, |
|
emb_dropout=0.01, |
|
): |
|
super().__init__() |
|
image_height, image_width = pair(image_size) |
|
patch_height, patch_width = pair(patch_size) |
|
|
|
assert image_height % patch_height == 0 and image_width % patch_width == 0, ( |
|
"Image dimensions must be divisible by the patch size." |
|
) |
|
|
|
num_patches = (image_height // patch_height) * (image_width // patch_width) |
|
patch_dim = channels * patch_height * patch_width |
|
assert pool in {"cls", "mean"}, ( |
|
"pool type must be either cls (cls token) or mean (mean pooling)" |
|
) |
|
|
|
self.to_patch_embedding = nn.Sequential( |
|
Rearrange( |
|
"b c (h p1) (w p2) -> b (h w) (p1 p2 c)", |
|
p1=patch_height, |
|
p2=patch_width, |
|
), |
|
nn.LayerNorm(patch_dim), |
|
nn.Linear(patch_dim, dim), |
|
nn.LayerNorm(dim), |
|
) |
|
|
|
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) |
|
self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) |
|
self.dropout = nn.Dropout(emb_dropout) |
|
|
|
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) |
|
|
|
self.pool = pool |
|
self.to_latent = nn.Identity() |
|
|
|
self.mlp_head = nn.Linear(dim, num_classes) |
|
|
|
def forward(self, img): |
|
x = self.to_patch_embedding(img) |
|
b, n, _ = x.shape |
|
|
|
cls_tokens = repeat(self.cls_token, "1 1 d -> b 1 d", b=b) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
x += self.pos_embedding[:, : (n + 1)] |
|
x = self.dropout(x) |
|
|
|
x = self.transformer(x) |
|
|
|
x = x.mean(dim=1) if self.pool == "mean" else x[:, 0] |
|
|
|
x = self.to_latent(x) |
|
return self.mlp_head(x) |
|
|