distilbart-podimo-data-eval-3

This model is a fine-tuned version of sshleifer/distilbart-cnn-12-6 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.3828
  • Rouge1: 32.8203
  • Rouge2: 7.8994
  • Rougel: 18.9659
  • Rougelsum: 29.4196
  • Gen Len: 114.5264

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
3.9049 1.0 132 3.5343 30.2542 6.031 17.269 26.9847 113.7689
3.4248 2.0 264 3.4055 31.6518 7.2786 18.2641 28.4006 114.6547
3.1594 3.0 396 3.3579 32.0442 7.3554 18.3492 28.7615 113.7443
2.9645 4.0 528 3.3445 32.0945 7.637 18.6289 28.899 115.5321
2.8073 5.0 660 3.3470 32.7852 7.9597 19.2358 29.5057 108.3519
2.685 6.0 792 3.3532 32.3775 7.661 18.6719 28.9282 117.1104
2.5941 7.0 924 3.3711 32.6976 7.8917 19.069 29.3785 113.1943
2.5267 8.0 1056 3.3828 32.8203 7.8994 18.9659 29.4196 114.5264

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.11.0
  • Datasets 2.2.1
  • Tokenizers 0.12.1
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.