train
This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6648
- Accuracy: 0.7617
- B Acc: 0.6394
- Prec: 0.7595
- Recall: 0.7617
- F1: 0.7602
- Prec Joy: 0.7315
- Recall Joy: 0.7793
- F1 Joy: 0.7547
- Prec Anger: 0.6467
- Recall Anger: 0.6507
- F1 Anger: 0.6487
- Prec Disgust: 0.4710
- Recall Disgust: 0.45
- F1 Disgust: 0.4603
- Prec Fear: 0.6963
- Recall Fear: 0.6409
- F1 Fear: 0.6675
- Prec Neutral: 0.8457
- Recall Neutral: 0.8490
- F1 Neutral: 0.8474
- Prec Sadness: 0.7094
- Recall Sadness: 0.6738
- F1 Sadness: 0.6911
- Prec Surprise: 0.5228
- Recall Surprise: 0.4323
- F1 Surprise: 0.4732
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | B Acc | Prec | Recall | F1 | Prec Joy | Recall Joy | F1 Joy | Prec Anger | Recall Anger | F1 Anger | Prec Disgust | Recall Disgust | F1 Disgust | Prec Fear | Recall Fear | F1 Fear | Prec Neutral | Recall Neutral | F1 Neutral | Prec Sadness | Recall Sadness | F1 Sadness | Prec Surprise | Recall Surprise | F1 Surprise |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.9538 | 0.15 | 232 | 0.8701 | 0.6961 | 0.4790 | 0.6837 | 0.6961 | 0.6837 | 0.7401 | 0.6381 | 0.6853 | 0.4622 | 0.5391 | 0.4977 | 0.25 | 0.0018 | 0.0035 | 0.5527 | 0.4292 | 0.4832 | 0.7965 | 0.8618 | 0.8279 | 0.5281 | 0.6431 | 0.5800 | 0.3562 | 0.2398 | 0.2866 |
0.7952 | 0.3 | 464 | 0.8010 | 0.7168 | 0.5242 | 0.7098 | 0.7168 | 0.7025 | 0.8084 | 0.5948 | 0.6853 | 0.5732 | 0.4710 | 0.5171 | 0.4713 | 0.2643 | 0.3387 | 0.6156 | 0.5263 | 0.5675 | 0.7405 | 0.9250 | 0.8226 | 0.6858 | 0.5676 | 0.6211 | 0.4448 | 0.3204 | 0.3725 |
0.7528 | 0.45 | 696 | 0.7560 | 0.7261 | 0.5878 | 0.7309 | 0.7261 | 0.7256 | 0.6969 | 0.7646 | 0.7292 | 0.5550 | 0.5534 | 0.5542 | 0.3409 | 0.4821 | 0.3994 | 0.7225 | 0.4842 | 0.5798 | 0.8476 | 0.8159 | 0.8314 | 0.6118 | 0.7027 | 0.6541 | 0.4957 | 0.3118 | 0.3828 |
0.7334 | 0.6 | 928 | 0.7310 | 0.7370 | 0.5868 | 0.7345 | 0.7370 | 0.7283 | 0.7170 | 0.7458 | 0.7311 | 0.7129 | 0.4116 | 0.5219 | 0.3727 | 0.5696 | 0.4506 | 0.6671 | 0.5626 | 0.6104 | 0.7898 | 0.8859 | 0.8351 | 0.7318 | 0.5844 | 0.6499 | 0.5252 | 0.3473 | 0.4181 |
0.7216 | 0.75 | 1160 | 0.7043 | 0.7448 | 0.6009 | 0.7403 | 0.7448 | 0.7389 | 0.7767 | 0.6826 | 0.7266 | 0.6159 | 0.5386 | 0.5746 | 0.5302 | 0.4393 | 0.4805 | 0.8023 | 0.5602 | 0.6598 | 0.7854 | 0.8926 | 0.8356 | 0.7005 | 0.632 | 0.6645 | 0.4815 | 0.4613 | 0.4712 |
0.7259 | 0.9 | 1392 | 0.6962 | 0.7475 | 0.6082 | 0.7433 | 0.7475 | 0.7412 | 0.7355 | 0.7586 | 0.7469 | 0.6758 | 0.4504 | 0.5405 | 0.3908 | 0.5589 | 0.4600 | 0.6939 | 0.6070 | 0.6475 | 0.8122 | 0.8744 | 0.8421 | 0.6830 | 0.6676 | 0.6752 | 0.5494 | 0.3409 | 0.4207 |
0.6362 | 1.05 | 1624 | 0.6771 | 0.7526 | 0.6055 | 0.7472 | 0.7526 | 0.7484 | 0.7392 | 0.7483 | 0.7437 | 0.5873 | 0.6191 | 0.6028 | 0.5302 | 0.3768 | 0.4405 | 0.7388 | 0.5789 | 0.6492 | 0.8213 | 0.8670 | 0.8435 | 0.7090 | 0.6507 | 0.6786 | 0.5301 | 0.3978 | 0.4545 |
0.621 | 1.2 | 1856 | 0.6779 | 0.7528 | 0.6120 | 0.7494 | 0.7528 | 0.7487 | 0.7107 | 0.7828 | 0.7450 | 0.6508 | 0.5913 | 0.6196 | 0.4980 | 0.4518 | 0.4738 | 0.7963 | 0.5532 | 0.6529 | 0.8165 | 0.8590 | 0.8372 | 0.7499 | 0.6236 | 0.6809 | 0.5078 | 0.4226 | 0.4613 |
0.6241 | 1.35 | 2088 | 0.6849 | 0.7513 | 0.6367 | 0.7526 | 0.7513 | 0.7514 | 0.7429 | 0.7592 | 0.7510 | 0.5795 | 0.6531 | 0.6141 | 0.4372 | 0.4661 | 0.4512 | 0.6462 | 0.6515 | 0.6488 | 0.8492 | 0.8372 | 0.8432 | 0.6887 | 0.6609 | 0.6745 | 0.5271 | 0.4290 | 0.4730 |
0.6188 | 1.5 | 2320 | 0.6713 | 0.7579 | 0.6159 | 0.7539 | 0.7579 | 0.7534 | 0.7071 | 0.7971 | 0.7494 | 0.6343 | 0.6267 | 0.6305 | 0.5877 | 0.3768 | 0.4592 | 0.7247 | 0.6281 | 0.6729 | 0.8361 | 0.8496 | 0.8428 | 0.6943 | 0.6693 | 0.6816 | 0.5919 | 0.3634 | 0.4504 |
0.6182 | 1.65 | 2552 | 0.6608 | 0.7601 | 0.6199 | 0.7567 | 0.7601 | 0.7566 | 0.7143 | 0.7891 | 0.7498 | 0.6163 | 0.6358 | 0.6259 | 0.5607 | 0.3875 | 0.4583 | 0.7591 | 0.6082 | 0.6753 | 0.8375 | 0.8578 | 0.8475 | 0.7324 | 0.6436 | 0.6851 | 0.5381 | 0.4172 | 0.4700 |
0.6392 | 1.8 | 2784 | 0.6542 | 0.7624 | 0.6261 | 0.7593 | 0.7624 | 0.7596 | 0.7513 | 0.7584 | 0.7548 | 0.5970 | 0.6708 | 0.6318 | 0.5711 | 0.3875 | 0.4617 | 0.7482 | 0.6152 | 0.6752 | 0.8379 | 0.8635 | 0.8505 | 0.7076 | 0.668 | 0.6872 | 0.5132 | 0.4194 | 0.4615 |
0.6158 | 1.95 | 3016 | 0.6456 | 0.7649 | 0.6279 | 0.7599 | 0.7649 | 0.7614 | 0.7490 | 0.7548 | 0.7519 | 0.6402 | 0.6378 | 0.6390 | 0.5314 | 0.4232 | 0.4712 | 0.7569 | 0.6117 | 0.6766 | 0.8310 | 0.8753 | 0.8526 | 0.7199 | 0.6627 | 0.6901 | 0.5063 | 0.4301 | 0.4651 |
0.554 | 2.1 | 3248 | 0.6742 | 0.7584 | 0.6346 | 0.7555 | 0.7584 | 0.7564 | 0.7293 | 0.7732 | 0.7506 | 0.6433 | 0.6430 | 0.6432 | 0.5031 | 0.4393 | 0.4690 | 0.7292 | 0.6363 | 0.6796 | 0.8347 | 0.8496 | 0.8421 | 0.7163 | 0.6587 | 0.6863 | 0.5049 | 0.4419 | 0.4713 |
0.5537 | 2.25 | 3480 | 0.6708 | 0.7633 | 0.6283 | 0.7604 | 0.7633 | 0.7605 | 0.7263 | 0.7801 | 0.7523 | 0.6304 | 0.6612 | 0.6455 | 0.5806 | 0.3732 | 0.4543 | 0.7486 | 0.6094 | 0.6718 | 0.8442 | 0.8528 | 0.8485 | 0.6982 | 0.692 | 0.6951 | 0.5356 | 0.4290 | 0.4764 |
0.5375 | 2.4 | 3712 | 0.6712 | 0.7606 | 0.6402 | 0.7592 | 0.7606 | 0.7595 | 0.7373 | 0.7709 | 0.7537 | 0.6245 | 0.6608 | 0.6421 | 0.4827 | 0.4482 | 0.4648 | 0.7319 | 0.6257 | 0.6747 | 0.8454 | 0.8474 | 0.8464 | 0.7006 | 0.6769 | 0.6885 | 0.5204 | 0.4516 | 0.4836 |
0.5175 | 2.55 | 3944 | 0.6625 | 0.7625 | 0.6369 | 0.7600 | 0.7625 | 0.7604 | 0.7422 | 0.7642 | 0.7530 | 0.6335 | 0.6526 | 0.6429 | 0.4481 | 0.4929 | 0.4694 | 0.7482 | 0.6187 | 0.6773 | 0.8374 | 0.8604 | 0.8488 | 0.7252 | 0.6684 | 0.6957 | 0.5321 | 0.4011 | 0.4574 |
0.5182 | 2.7 | 4176 | 0.6621 | 0.7631 | 0.6404 | 0.7602 | 0.7631 | 0.7612 | 0.7343 | 0.7766 | 0.7549 | 0.6491 | 0.6392 | 0.6441 | 0.4739 | 0.4536 | 0.4635 | 0.6784 | 0.6538 | 0.6659 | 0.8444 | 0.8529 | 0.8486 | 0.7109 | 0.684 | 0.6972 | 0.5458 | 0.4226 | 0.4764 |
0.5148 | 2.85 | 4408 | 0.6638 | 0.7637 | 0.6383 | 0.7598 | 0.7637 | 0.7612 | 0.7394 | 0.7741 | 0.7563 | 0.6741 | 0.6205 | 0.6462 | 0.5 | 0.4375 | 0.4667 | 0.6813 | 0.6550 | 0.6679 | 0.8400 | 0.8572 | 0.8485 | 0.6922 | 0.6916 | 0.6919 | 0.5296 | 0.4323 | 0.4760 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.2
- Tokenizers 0.13.3
- Downloads last month
- 24
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for emo-nlp/7-emo
Base model
FacebookAI/roberta-base