train

This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6648
  • Accuracy: 0.7617
  • B Acc: 0.6394
  • Prec: 0.7595
  • Recall: 0.7617
  • F1: 0.7602
  • Prec Joy: 0.7315
  • Recall Joy: 0.7793
  • F1 Joy: 0.7547
  • Prec Anger: 0.6467
  • Recall Anger: 0.6507
  • F1 Anger: 0.6487
  • Prec Disgust: 0.4710
  • Recall Disgust: 0.45
  • F1 Disgust: 0.4603
  • Prec Fear: 0.6963
  • Recall Fear: 0.6409
  • F1 Fear: 0.6675
  • Prec Neutral: 0.8457
  • Recall Neutral: 0.8490
  • F1 Neutral: 0.8474
  • Prec Sadness: 0.7094
  • Recall Sadness: 0.6738
  • F1 Sadness: 0.6911
  • Prec Surprise: 0.5228
  • Recall Surprise: 0.4323
  • F1 Surprise: 0.4732

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Accuracy B Acc Prec Recall F1 Prec Joy Recall Joy F1 Joy Prec Anger Recall Anger F1 Anger Prec Disgust Recall Disgust F1 Disgust Prec Fear Recall Fear F1 Fear Prec Neutral Recall Neutral F1 Neutral Prec Sadness Recall Sadness F1 Sadness Prec Surprise Recall Surprise F1 Surprise
0.9538 0.15 232 0.8701 0.6961 0.4790 0.6837 0.6961 0.6837 0.7401 0.6381 0.6853 0.4622 0.5391 0.4977 0.25 0.0018 0.0035 0.5527 0.4292 0.4832 0.7965 0.8618 0.8279 0.5281 0.6431 0.5800 0.3562 0.2398 0.2866
0.7952 0.3 464 0.8010 0.7168 0.5242 0.7098 0.7168 0.7025 0.8084 0.5948 0.6853 0.5732 0.4710 0.5171 0.4713 0.2643 0.3387 0.6156 0.5263 0.5675 0.7405 0.9250 0.8226 0.6858 0.5676 0.6211 0.4448 0.3204 0.3725
0.7528 0.45 696 0.7560 0.7261 0.5878 0.7309 0.7261 0.7256 0.6969 0.7646 0.7292 0.5550 0.5534 0.5542 0.3409 0.4821 0.3994 0.7225 0.4842 0.5798 0.8476 0.8159 0.8314 0.6118 0.7027 0.6541 0.4957 0.3118 0.3828
0.7334 0.6 928 0.7310 0.7370 0.5868 0.7345 0.7370 0.7283 0.7170 0.7458 0.7311 0.7129 0.4116 0.5219 0.3727 0.5696 0.4506 0.6671 0.5626 0.6104 0.7898 0.8859 0.8351 0.7318 0.5844 0.6499 0.5252 0.3473 0.4181
0.7216 0.75 1160 0.7043 0.7448 0.6009 0.7403 0.7448 0.7389 0.7767 0.6826 0.7266 0.6159 0.5386 0.5746 0.5302 0.4393 0.4805 0.8023 0.5602 0.6598 0.7854 0.8926 0.8356 0.7005 0.632 0.6645 0.4815 0.4613 0.4712
0.7259 0.9 1392 0.6962 0.7475 0.6082 0.7433 0.7475 0.7412 0.7355 0.7586 0.7469 0.6758 0.4504 0.5405 0.3908 0.5589 0.4600 0.6939 0.6070 0.6475 0.8122 0.8744 0.8421 0.6830 0.6676 0.6752 0.5494 0.3409 0.4207
0.6362 1.05 1624 0.6771 0.7526 0.6055 0.7472 0.7526 0.7484 0.7392 0.7483 0.7437 0.5873 0.6191 0.6028 0.5302 0.3768 0.4405 0.7388 0.5789 0.6492 0.8213 0.8670 0.8435 0.7090 0.6507 0.6786 0.5301 0.3978 0.4545
0.621 1.2 1856 0.6779 0.7528 0.6120 0.7494 0.7528 0.7487 0.7107 0.7828 0.7450 0.6508 0.5913 0.6196 0.4980 0.4518 0.4738 0.7963 0.5532 0.6529 0.8165 0.8590 0.8372 0.7499 0.6236 0.6809 0.5078 0.4226 0.4613
0.6241 1.35 2088 0.6849 0.7513 0.6367 0.7526 0.7513 0.7514 0.7429 0.7592 0.7510 0.5795 0.6531 0.6141 0.4372 0.4661 0.4512 0.6462 0.6515 0.6488 0.8492 0.8372 0.8432 0.6887 0.6609 0.6745 0.5271 0.4290 0.4730
0.6188 1.5 2320 0.6713 0.7579 0.6159 0.7539 0.7579 0.7534 0.7071 0.7971 0.7494 0.6343 0.6267 0.6305 0.5877 0.3768 0.4592 0.7247 0.6281 0.6729 0.8361 0.8496 0.8428 0.6943 0.6693 0.6816 0.5919 0.3634 0.4504
0.6182 1.65 2552 0.6608 0.7601 0.6199 0.7567 0.7601 0.7566 0.7143 0.7891 0.7498 0.6163 0.6358 0.6259 0.5607 0.3875 0.4583 0.7591 0.6082 0.6753 0.8375 0.8578 0.8475 0.7324 0.6436 0.6851 0.5381 0.4172 0.4700
0.6392 1.8 2784 0.6542 0.7624 0.6261 0.7593 0.7624 0.7596 0.7513 0.7584 0.7548 0.5970 0.6708 0.6318 0.5711 0.3875 0.4617 0.7482 0.6152 0.6752 0.8379 0.8635 0.8505 0.7076 0.668 0.6872 0.5132 0.4194 0.4615
0.6158 1.95 3016 0.6456 0.7649 0.6279 0.7599 0.7649 0.7614 0.7490 0.7548 0.7519 0.6402 0.6378 0.6390 0.5314 0.4232 0.4712 0.7569 0.6117 0.6766 0.8310 0.8753 0.8526 0.7199 0.6627 0.6901 0.5063 0.4301 0.4651
0.554 2.1 3248 0.6742 0.7584 0.6346 0.7555 0.7584 0.7564 0.7293 0.7732 0.7506 0.6433 0.6430 0.6432 0.5031 0.4393 0.4690 0.7292 0.6363 0.6796 0.8347 0.8496 0.8421 0.7163 0.6587 0.6863 0.5049 0.4419 0.4713
0.5537 2.25 3480 0.6708 0.7633 0.6283 0.7604 0.7633 0.7605 0.7263 0.7801 0.7523 0.6304 0.6612 0.6455 0.5806 0.3732 0.4543 0.7486 0.6094 0.6718 0.8442 0.8528 0.8485 0.6982 0.692 0.6951 0.5356 0.4290 0.4764
0.5375 2.4 3712 0.6712 0.7606 0.6402 0.7592 0.7606 0.7595 0.7373 0.7709 0.7537 0.6245 0.6608 0.6421 0.4827 0.4482 0.4648 0.7319 0.6257 0.6747 0.8454 0.8474 0.8464 0.7006 0.6769 0.6885 0.5204 0.4516 0.4836
0.5175 2.55 3944 0.6625 0.7625 0.6369 0.7600 0.7625 0.7604 0.7422 0.7642 0.7530 0.6335 0.6526 0.6429 0.4481 0.4929 0.4694 0.7482 0.6187 0.6773 0.8374 0.8604 0.8488 0.7252 0.6684 0.6957 0.5321 0.4011 0.4574
0.5182 2.7 4176 0.6621 0.7631 0.6404 0.7602 0.7631 0.7612 0.7343 0.7766 0.7549 0.6491 0.6392 0.6441 0.4739 0.4536 0.4635 0.6784 0.6538 0.6659 0.8444 0.8529 0.8486 0.7109 0.684 0.6972 0.5458 0.4226 0.4764
0.5148 2.85 4408 0.6638 0.7637 0.6383 0.7598 0.7637 0.7612 0.7394 0.7741 0.7563 0.6741 0.6205 0.6462 0.5 0.4375 0.4667 0.6813 0.6550 0.6679 0.8400 0.8572 0.8485 0.6922 0.6916 0.6919 0.5296 0.4323 0.4760

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.2
  • Tokenizers 0.13.3
Downloads last month
24
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for emo-nlp/7-emo

Finetuned
(1375)
this model