|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
base_model: nandovallec/whisper-tiny-bg-l |
|
model-index: |
|
- name: whisper-tiny-order |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# whisper-tiny-order |
|
|
|
This model is a fine-tuned version of [nandovallec/whisper-tiny-bg-l](https://huggingface.co/nandovallec/whisper-tiny-bg-l) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0015 |
|
- Wer: 0.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 256 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 150 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.5799 | 5.0 | 5 | 1.8414 | 116.3934 | |
|
| 0.2647 | 10.0 | 10 | 0.7719 | 61.4754 | |
|
| 0.1199 | 15.0 | 15 | 0.3593 | 34.4262 | |
|
| 0.063 | 20.0 | 20 | 0.1827 | 18.8525 | |
|
| 0.0257 | 25.0 | 25 | 0.0710 | 4.9180 | |
|
| 0.0103 | 30.0 | 30 | 0.0294 | 0.8197 | |
|
| 0.0045 | 35.0 | 35 | 0.0149 | 0.0 | |
|
| 0.0028 | 40.0 | 40 | 0.0094 | 0.0 | |
|
| 0.0019 | 45.0 | 45 | 0.0064 | 0.0 | |
|
| 0.0014 | 50.0 | 50 | 0.0048 | 0.0 | |
|
| 0.0011 | 55.0 | 55 | 0.0038 | 0.0 | |
|
| 0.0009 | 60.0 | 60 | 0.0032 | 0.0 | |
|
| 0.0008 | 65.0 | 65 | 0.0028 | 0.0 | |
|
| 0.0007 | 70.0 | 70 | 0.0025 | 0.0 | |
|
| 0.0006 | 75.0 | 75 | 0.0023 | 0.0 | |
|
| 0.0006 | 80.0 | 80 | 0.0022 | 0.0 | |
|
| 0.0006 | 85.0 | 85 | 0.0021 | 0.0 | |
|
| 0.0005 | 90.0 | 90 | 0.0020 | 0.0 | |
|
| 0.0005 | 95.0 | 95 | 0.0019 | 0.0 | |
|
| 0.0005 | 100.0 | 100 | 0.0018 | 0.0 | |
|
| 0.0005 | 105.0 | 105 | 0.0017 | 0.0 | |
|
| 0.0005 | 110.0 | 110 | 0.0017 | 0.0 | |
|
| 0.0004 | 115.0 | 115 | 0.0017 | 0.0 | |
|
| 0.0004 | 120.0 | 120 | 0.0016 | 0.0 | |
|
| 0.0004 | 125.0 | 125 | 0.0016 | 0.0 | |
|
| 0.0004 | 130.0 | 130 | 0.0016 | 0.0 | |
|
| 0.0004 | 135.0 | 135 | 0.0016 | 0.0 | |
|
| 0.0004 | 140.0 | 140 | 0.0015 | 0.0 | |
|
| 0.0004 | 145.0 | 145 | 0.0015 | 0.0 | |
|
| 0.0004 | 150.0 | 150 | 0.0015 | 0.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.1 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|