llama-2-13b-mini / README.md
emre's picture
Create README.md
ec88867
|
raw
history blame
1.22 kB
metadata
license: apache-2.0
datasets:
  - mlabonne/guanaco-llama2-1k
pipeline_tag: text-generation

πŸ¦™πŸ§  emre/llama-2-13b-mini

This is a Llama-2-13b-chat-hf model fine-tuned using QLoRA (4-bit precision).

πŸ”§ Training

It was trained Colab Pro+. It is mainly designed for educational purposes, not for inference but can be used exclusivly with BBVA Group, GarantiBBVA and its subsidiaries. Parameters:

max_seq_length = 2048
use_nested_quant = True
bnb_4bit_compute_dtype=bfloat16
lora_r=8
lora_alpha=16
lora_dropout=0.05
per_device_train_batch_size=2

πŸ’» Usage

# pip install transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "emre/llama-2-13b-mini"
prompt = "What is a large language model?"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

sequences = pipeline(
    f'<s>[INST] {prompt} [/INST]',
    do_sample=True,
    top_k=10,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
    max_length=200,
)
for seq in sequences:
    print(f"Result: {seq['generated_text']}")