emre's picture
Update README.md
4d6f668
|
raw
history blame
2.12 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
  - robust-speech-event
datasets:
  - common_voice
model-index:
  - name: wav2vec2-xls-r-300m-Br-small
    results:
      - task:
          name: Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice br
          type: common_voice
          args: br
        metrics:
          - name: Test WER
            type: wer
            value: 66.75

wav2vec2-xls-r-300m-Br-small

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0573
  • Wer: 0.6675

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
5.7464 2.79 400 1.7474 1.1018
1.1117 5.59 800 0.9434 0.8697
0.6481 8.39 1200 0.9251 0.7910
0.4754 11.19 1600 0.9208 0.7412
0.3602 13.98 2000 0.9284 0.7232
0.2873 16.78 2400 0.9299 0.6940
0.2386 19.58 2800 1.0182 0.6927
0.1971 22.38 3200 1.0456 0.6898
0.1749 25.17 3600 1.0208 0.6769
0.1487 27.97 4000 1.0573 0.6675

Framework versions

  • Transformers 4.11.3
  • Pytorch 1.10.0+cu111
  • Datasets 1.14.0
  • Tokenizers 0.10.3