Whisper Large v3 Fine-Tuned Finnish - CommonVoice13

This model is a fine-tuned version of openai/whisper-large-v3 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3365
  • Wer: 20.4123

It achieves the following results on the Test set:

  • Eval_Wer: 20.430701270016566
  • Eval_NormalizedWer: 17.3945021605222

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 800
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.4113 0.84 50 0.3499 29.6797
0.2435 1.68 100 0.3457 29.3392
0.1657 2.53 150 0.3645 28.0692
0.0981 3.37 200 0.3741 28.5478
0.0651 4.21 250 0.4005 29.8454
0.0471 5.05 300 0.3751 28.0968
0.0291 5.89 350 0.3521 25.7869
0.0178 6.74 400 0.3535 24.1303
0.0099 7.58 450 0.3393 23.2468
0.0053 8.42 500 0.3336 23.6702
0.0031 9.26 550 0.3284 21.9676
0.0018 10.11 600 0.3328 22.9615
0.0008 10.95 650 0.3324 20.6976
0.0003 11.79 700 0.3348 20.5227
0.0003 12.63 750 0.3360 20.4215
0.0002 13.47 800 0.3365 20.4123

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.0.1
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
6
Safetensors
Model size
1.54B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for enakilci/whisper-large-v3-fi-800steps-8batch-8grad_steps-0.0001lr

Finetuned
(389)
this model