eolang's picture
Update README.md
06e0c62
|
raw
history blame
1.54 kB
metadata
language:
  - sw
license: apache-2.0
datasets:
  - wikiann
pipeline_tag: token-classification
examples: null
widget:
  - text: >-
      Serikali imetangaza hali ya janga katika wilaya 10 za kusini ambazo
      zimeathiriwa zaidi na dhoruba.
    example_title: Sentence_1
  - text: Asidi ya mafuta ya Omega-3 inachukuliwa kuwa muhimu kwa mwili wa binadamu.
    example_title: Sentence_2
  - text: Tahadhari yatolewa kuhusu uwezekano wa mlipuko wa Volkano DR Congo.
    example_title: Sentence_3
metrics:
  - accuracy
  - f1
  - precision
  - recall
library_name: transformers

Intended uses & limitations

How to use

You can use this model with Transformers pipeline for NER.

from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForTokenClassification

tokenizer = AutoTokenizer.from_pretrained("eolang/Swahili-NER-BertBase-Cased")
model = AutoModelForTokenClassification.from_pretrained("eolang/Swahili-NER-BertBase-Cased")

nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Kwa nini Kenya inageukia mazao ya GMO kukabiliana na ukame"

ner_results = nlp(example)
print(ner_results)

Training data

This model was fine-tuned on the Swahili Version of the WikiAnn dataset for cross-lingual name tagging and linking based on Wikipedia articles in 295 languages

Training procedure

This model was trained on a single NVIDIA A 5000 GPU with recommended hyperparameters from the original BERT paper which trained & evaluated the model on CoNLL-2003 NER task.