ericflo's picture
Update README.md
d25b955 verified
metadata
license: apache-2.0
datasets:
  - OpenRLHF/prompt-collection-v0.1
base_model:
  - meta-llama/Llama-3.2-1B-Instruct
library_name: transformers

This model's benchmark results

Tasks Version Filter n-shot Metric Value Stderr
tinyBenchmarks N/A
- tinyArc 0 none 25 acc_norm 0.4253 ± N/A
- tinyGSM8k 0 flexible-extract 5 exact_match 0.3768 ± N/A
strict-match 5 exact_match 0.3768 ± N/A
- tinyHellaswag 0 none 10 acc_norm 0.5379 ± N/A
- tinyMMLU 0 none 0 acc_norm 0.4483 ± N/A
- tinyTruthfulQA 0 none 0 acc 0.4217 ± N/A
- tinyWinogrande 0 none 5 acc_norm 0.5366 ± N/A

Original meta-llama/Llama-3.2-1B-Instruct benchmark results

Tasks Version Filter n-shot Metric Value Stderr
tinyBenchmarks N/A
- tinyArc 0 none 25 acc_norm 0.4145 ± N/A
- tinyGSM8k 0 flexible-extract 5 exact_match 0.3412 ± N/A
strict-match 5 exact_match 0.3412 ± N/A
- tinyHellaswag 0 none 10 acc_norm 0.5335 ± N/A
- tinyMMLU 0 none 0 acc_norm 0.4298 ± N/A
- tinyTruthfulQA 0 none 0 acc 0.4288 ± N/A
- tinyWinogrande 0 none 5 acc_norm 0.5366 ± N/A

Below is a side-by-side comparison of the two result sets. For each task, the higher value (i.e., “better” on that metric) is highlighted in bold:

Task this orig Better?
tinyArc (acc_norm) 0.4253 0.4145 v1 higher
tinyGSM8k (exact_match) 0.3768 0.3412 v1 higher
tinyHellaswag (acc_norm) 0.5379 0.5335 v1 higher
tinyMMLU (acc_norm) 0.4483 0.4298 v1 higher
tinyTruthfulQA (acc) 0.4217 0.4288 v2 higher
tinyWinogrande (acc_norm) 0.5366 0.5366 tie

Observations

  1. Ours outperforms the original on four tasks (tinyArc, tinyGSM8k, tinyHellaswag, tinyMMLU).
  2. The original outperforms ours on one task (tinyTruthfulQA).
  3. One task is a tie (tinyWinogrande).

Given these comparisons, our results are stronger overall because it has higher scores on the majority of tasks. The only exception is on tinyTruthfulQA, where the original scores slightly better, and on tinyWinogrande, both versions tie.