ericzzz's picture
Update README.md
29cc70a verified
metadata
language:
  - en
license: apache-2.0
tags:
  - text-generation-inference
datasets:
  - Open-Orca/SlimOrca
pipeline_tag: text-generation
inference: false
model-index:
  - name: falcon-rw-1b-instruct-openorca
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 34.56
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ericzzz/falcon-rw-1b-instruct-openorca
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 60.93
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ericzzz/falcon-rw-1b-instruct-openorca
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 28.77
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ericzzz/falcon-rw-1b-instruct-openorca
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 37.42
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ericzzz/falcon-rw-1b-instruct-openorca
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 60.69
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ericzzz/falcon-rw-1b-instruct-openorca
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 3.41
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ericzzz/falcon-rw-1b-instruct-openorca
          name: Open LLM Leaderboard

🌟 Falcon-RW-1B-Instruct-OpenOrca

Falcon-RW-1B-Instruct-OpenOrca is a 1B parameter, causal decoder-only model based on Falcon-RW-1B and finetuned on the Open-Orca/SlimOrca dataset.

✨Check out our new conversational model Falcon-RW-1B-Chat!✨

πŸ“Š Evaluation Results

Falcon-RW-1B-Instruct-OpenOrca was the #1 ranking model (unfortunately not anymore) on Open LLM Leaderboard in ~1.5B parameters category! A detailed result can be found here.

Metric falcon-rw-1b-instruct-openorca falcon-rw-1b
ARC 34.56 35.07
HellaSwag 60.93 63.56
MMLU 28.77 25.28
TruthfulQA 37.42 35.96
Winogrande 60.69 62.04
GSM8K 3.41 0.53
Average 37.63 37.07

πŸš€ Motivations

  1. To create a smaller, open-source, instruction-finetuned, ready-to-use model accessible for users with limited computational resources (lower-end consumer GPUs).
  2. To harness the strength of Falcon-RW-1B, a competitive model in its own right, and enhance its capabilities with instruction finetuning.

πŸ“– How to Use

The model operates with a structured prompt format, incorporating <SYS>, <INST>, and <RESP> tags to demarcate different parts of the input. The system message and instruction are placed within these tags, with the <RESP> tag triggering the model's response.

πŸ“ Example Code

from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch

model = 'ericzzz/falcon-rw-1b-instruct-openorca'

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
   'text-generation',
   model=model,
   tokenizer=tokenizer,
   torch_dtype=torch.bfloat16,
   device_map='auto',
)

system_message = 'You are a helpful assistant. Give short answers.'
instruction = 'What is AI? Give some examples.'
prompt = f'<SYS> {system_message} <INST> {instruction} <RESP> '

response = pipeline(
   prompt, 
   max_length=200,
   repetition_penalty=1.05
)

print(response[0]['generated_text'])
# AI, or Artificial Intelligence, refers to the ability of machines and software to perform tasks that require human intelligence, such as learning, reasoning, and problem-solving. It can be used in various fields like computer science, engineering, medicine, and more. Some common applications include image recognition, speech translation, and natural language processing.

⚠️ Limitations

This model may generate inaccurate or misleading information and is prone to hallucination, creating plausible but false narratives. It lacks the ability to discern factual content from fiction and may inadvertently produce biased, harmful or offensive content. Its understanding of complex, nuanced queries is limited. Users should be aware of this and verify any information obtained from the model.

The model is provided 'as is' without any warranties, and the creators are not liable for any damages arising from its use. Users are responsible for their interactions with the model.

πŸ“¬ Contact

For further inquiries or feedback, please contact at [email protected].

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 37.63
AI2 Reasoning Challenge (25-Shot) 34.56
HellaSwag (10-Shot) 60.93
MMLU (5-Shot) 28.77
TruthfulQA (0-shot) 37.42
Winogrande (5-shot) 60.69
GSM8k (5-shot) 3.41