ernlavr's picture
Update README.md
51b8024
---
base_model: meta-llama/Llama-2-7b-hf
tags:
- generated_from_trainer
model-index:
- name: Llama2-7bn-xsum-adapter
results: []
datasets:
- EdinburghNLP/xsum
language:
- en
pipeline_tag: summarization
metrics:
- rouge
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Llama2-7bn-xsum-adapter
Weights & Biases runs for training and evaluation are available for a detailed overview!
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf)
on a [XSum](https://huggingface.co/datasets/EdinburghNLP/xsum) dataset with Causal LM task. You can view all the implementation details on the [GitHub project](https://github.com/ernlavr/llamarizer)
## Weights & Biases Training and Evaluation Documentation
See the [training](https://wandb.ai/ernlavr/adv_nlp2023/runs/yk6ytvv2) and
[evaluation](https://wandb.ai/ernlavr/adv_nlp2023/runs/f41oo2c6?workspace=user-ernestslavrinovics)
on Weights & Biases for more details!
Summary table of final metrics:
| Metric | rouge1 | rouge2 | rougeL | FactCC | ANLI | SummaC | BARTScore |
|------------------------|---------|---------|---------|---------|--------|---------|------------|
| Mean | 0.18 | 0.033 | 0.126 | 0.188 | 0.408 | 0.658 | -3.713 |
| Std | 0.09 | 0.049 | 0.067 | 0.317 | 0.462 | 0.247 | 0.831 |
## Training procedure
Causal language modeling. Nesting the summary paragraph in a prompt: {Summarize this article: '<INPUT_DOCUMENT>'; Summary: <OUTPUT>}
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- lr_scheduler_warmup_steps: 450.5
- num_epochs: 3
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.35.0
- Pytorch 2.0.1
- Datasets 2.14.6
- Tokenizers 0.14.1