Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/SmolLM2-135M
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - a0682f06fa4fb877_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/a0682f06fa4fb877_train_data.json
  type:
    field_instruction: instruction
    field_output: positive_sample
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: error577/d09828c9-a63a-4168-9212-271729f5e2cf
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 1000
micro_batch_size: 2
mlflow_experiment_name: /tmp/a0682f06fa4fb877_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 20
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 4096
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.02
wandb_entity: null
wandb_mode: online
wandb_name: 981e1948-88b4-489c-9ec2-583892ddfa73
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 981e1948-88b4-489c-9ec2-583892ddfa73
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

d09828c9-a63a-4168-9212-271729f5e2cf

This model is a fine-tuned version of unsloth/SmolLM2-135M on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.8314

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss
2.9265 0.0056 1 3.1834
2.6463 0.2797 50 2.9924
2.7358 0.5594 100 2.9361
2.7248 0.8392 150 2.9165
1.7698 1.1203 200 2.9056
2.663 1.4 250 2.8940
2.577 1.6797 300 2.8816
3.151 1.9594 350 2.8750
2.8115 2.2406 400 2.8675
3.0385 2.5203 450 2.8571
2.8689 2.8 500 2.8508
2.7139 3.0811 550 2.8480
3.3137 3.3608 600 2.8435
2.0524 3.6406 650 2.8411
3.0692 3.9203 700 2.8377
2.8281 4.2014 750 2.8348
2.7376 4.4811 800 2.8323
2.9253 4.7608 850 2.8327
3.1771 5.0420 900 2.8334
1.8451 5.3217 950 2.8321
1.9423 5.6014 1000 2.8314

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for error577/d09828c9-a63a-4168-9212-271729f5e2cf

Adapter
(232)
this model