|
--- |
|
tags: |
|
- generated_from_trainer |
|
- conversational |
|
- polish |
|
license: mit |
|
language: |
|
- pl |
|
datasets: |
|
- eryk-mazus/polka-dpo-v1 |
|
pipeline_tag: text-generation |
|
inference: false |
|
--- |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61bf0e11c88f3fd22f654059/FiMCITBAaEyMyxCHhfWVD.png) |
|
|
|
# Polka-1.1B-Chat |
|
|
|
`eryk-mazus/polka-1.1b-chat` **is the first Polish model trained to act as a helpful, conversational assistant that can be run locally.** |
|
|
|
The model is based on [TinyLlama-1.1B](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) with the custom, extended tokenizer for more efficient Polish text generation, that was additionally pretrained on 5.7 billion tokens. **It was then fine-tuned on around 60k synthetically generated and machine-translated multi-turn conversations with the [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290) performed on top of it.** |
|
|
|
Context size: 4,096 tokens |
|
|
|
In addition, we're releasing: |
|
* [polka-1.1b](https://huggingface.co/eryk-mazus/polka-1.1b) - our base model with an extended tokenizer and additional pre-training on Polish corpus sampled using [DSIR](https://github.com/p-lambda/dsir) |
|
* [polka-pretrain-en-pl-v1](https://huggingface.co/datasets/eryk-mazus/polka-pretrain-en-pl-v1) - the pre-training dataset |
|
* [polka-dpo-v1](https://huggingface.co/datasets/eryk-mazus/polka-dpo-v1) - dataset of DPO pairs |
|
* [polka-1.1b-chat-gguf](https://huggingface.co/eryk-mazus/polka-1.1b-chat-gguf) - GGUF files for the chat model |
|
|
|
## Usage |
|
|
|
Sample code: |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer |
|
|
|
model_name = "eryk-mazus/polka-1.1b-chat" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16, |
|
device_map="auto" |
|
) |
|
streamer = TextStreamer(tokenizer, skip_prompt=True) |
|
|
|
# You are a helpful assistant. |
|
system_prompt = "Jesteś pomocnym asystentem." |
|
chat = [{"role": "system", "content": system_prompt}] |
|
|
|
# Compose a short song on programming. |
|
user_input = "Napisz krótką piosenkę o programowaniu." |
|
chat.append({"role": "user", "content": user_input}) |
|
|
|
# Generate - add_generation_prompt to make sure it continues as assistant |
|
inputs = tokenizer.apply_chat_template(chat, add_generation_prompt=True, return_tensors="pt") |
|
# For multi-GPU, find the device of the first parameter of the model |
|
first_param_device = next(model.parameters()).device |
|
inputs = inputs.to(first_param_device) |
|
|
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
inputs, |
|
pad_token_id=tokenizer.eos_token_id, |
|
max_new_tokens=512, |
|
temperature=0.2, |
|
repetition_penalty=1.15, |
|
top_p=0.95, |
|
do_sample=True, |
|
streamer=streamer, |
|
) |
|
|
|
# Add just the new tokens to our chat |
|
new_tokens = outputs[0, inputs.size(1):] |
|
response = tokenizer.decode(new_tokens, skip_special_tokens=True) |
|
chat.append({"role": "assistant", "content": response}) |
|
``` |
|
|
|
The model works seamlessly with [vLLM](https://github.com/vllm-project/vllm) as well. |
|
|
|
## Prompt format |
|
|
|
This model uses ChatML as the prompt format: |
|
``` |
|
<|im_start|>system |
|
Jesteś pomocnym asystentem. |
|
<|im_start|>user |
|
Jakie jest dzienne zapotrzebowanie kaloryczne dorosłej osoby?<|im_end|> |
|
<|im_start|>assistant |
|
Dla dorosłych osób zaleca się spożywanie około 2000-3000 kcal dziennie, aby utrzymać optymalne zdrowie i dobre samopoczucie.<|im_end|> |
|
``` |
|
|
|
This prompt is available as a [chat template](https://huggingface.co/docs/transformers/chat_templating), which means you can format messages using the `tokenizer.apply_chat_template()` method, as demonstrated in the example above. |
|
|
|
*** |
|
We've actively looking for additional compute to train better and larger models for this project. If you want to collaborate, please reach out at: eryk.mazus at gmail dot com |