|
--- |
|
license: mit |
|
base_model: haining/scientific_abstract_simplification |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: SAS-finetuned-cochrane-medeasi |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# SAS-finetuned-cochrane-medeasi |
|
|
|
This model is a fine-tuned version of [haining/scientific_abstract_simplification](https://huggingface.co/haining/scientific_abstract_simplification) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: nan |
|
- Bleu: {'bleu': 3.5213074954706223e-06, 'precisions': [0.49951576455396535, 0.15234465234465233, 0.06880219369313224, 0.036816459122902004], 'brevity_penalty': 2.9884691172035265e-05, 'length_ratio': 0.08757975289560735, 'translation_length': 9293, 'reference_length': 106109} |
|
- Sari: {'sari': 2.5441859559296094} |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Sari | |
|
|:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:----------------------------:| |
|
| No log | 1.0 | 159 | nan | {'bleu': 3.5213074954706223e-06, 'precisions': [0.49951576455396535, 0.15234465234465233, 0.06880219369313224, 0.036816459122902004], 'brevity_penalty': 2.9884691172035265e-05, 'length_ratio': 0.08757975289560735, 'translation_length': 9293, 'reference_length': 106109} | {'sari': 2.5441859559296094} | |
|
| No log | 2.0 | 318 | nan | {'bleu': 3.5213074954706223e-06, 'precisions': [0.49951576455396535, 0.15234465234465233, 0.06880219369313224, 0.036816459122902004], 'brevity_penalty': 2.9884691172035265e-05, 'length_ratio': 0.08757975289560735, 'translation_length': 9293, 'reference_length': 106109} | {'sari': 2.5441859559296094} | |
|
| No log | 3.0 | 477 | nan | {'bleu': 3.5213074954706223e-06, 'precisions': [0.49951576455396535, 0.15234465234465233, 0.06880219369313224, 0.036816459122902004], 'brevity_penalty': 2.9884691172035265e-05, 'length_ratio': 0.08757975289560735, 'translation_length': 9293, 'reference_length': 106109} | {'sari': 2.5441859559296094} | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.1 |
|
|