bert_combined_top / README.md
eskayML's picture
eskayML/bert_combined_top_2
5ab76aa verified
metadata
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: bert_combined_top
    results: []

bert_combined_top

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0320
  • Accuracy: 0.9872

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9945 1.0 780 0.7471 0.7179
0.7659 2.0 1560 0.5219 0.8269
0.5512 3.0 2340 0.3141 0.9199
0.372 4.0 3120 0.2176 0.9519
0.2519 5.0 3900 0.1440 0.9679
0.172 6.0 4680 0.1142 0.9776
0.1873 7.0 5460 0.0943 0.9808
0.0807 8.0 6240 0.0449 0.9904
0.1075 9.0 7020 0.0432 0.9904
0.0479 10.0 7800 0.0320 0.9872

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0