Audio-to-Audio
ESPnet
English
audio

ESPnet2 ENH model

espnet/dns_icassp21_enh_train_enh_tcn_tf_raw

This model was trained by Yoshiki using dns_icassp21 recipe in espnet.

Demo: How to use in ESPnet2

cd espnet

pip install -e .
cd egs2/dns_icassp21/enh1
./run.sh --skip_data_prep false --skip_train true --download_model espnet/dns_icassp21_enh_train_enh_tcn_tf_raw

RESULTS

Environments

  • date: Thu Apr 21 21:49:46 UTC 2022
  • python version: 3.7.4 (default, Aug 13 2019, 20:35:49) [GCC 7.3.0]
  • espnet version: espnet 202204
  • pytorch version: pytorch 1.10.1+cu111
  • Git hash: ``
    • Commit date: ``

..

config: ./conf/train.yaml

dataset STOI SAR SDR SIR SI_SNR
enhanced_cv_synthetic 0.93 18.96 18.96 0.00 18.79
enhanced_tt_synthetic_track_1 0.77 14.19 14.19 0.00 12.15

ENH config

expand
config: ./conf/train.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: sequence
output_dir: exp/enh_train_raw
ngpu: 1
seed: 0
num_workers: 4
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: 4
dist_rank: 0
local_rank: 0
dist_master_addr: localhost
dist_master_port: 32787
dist_launcher: null
multiprocessing_distributed: true
unused_parameters: false
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 100
patience: 10
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
-   - valid
    - si_snr
    - max
-   - valid
    - loss
    - min
keep_nbest_models: 1
nbest_averaging_interval: 0
grad_clip: 5.0
grad_clip_type: 2.0
grad_noise: false
accum_grad: 1
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: null
use_matplotlib: true
use_tensorboard: true
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param: []
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: null
batch_size: 128
valid_batch_size: null
batch_bins: 1000000
valid_batch_bins: null
train_shape_file:
- exp/enh_stats_16k/train/speech_mix_shape
- exp/enh_stats_16k/train/speech_ref1_shape
valid_shape_file:
- exp/enh_stats_16k/valid/speech_mix_shape
- exp/enh_stats_16k/valid/speech_ref1_shape
batch_type: folded
valid_batch_type: null
fold_length:
- 80000
- 80000
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
train_data_path_and_name_and_type:
-   - dump/raw/tr_synthetic/wav.scp
    - speech_mix
    - sound
-   - dump/raw/tr_synthetic/spk1.scp
    - speech_ref1
    - sound
valid_data_path_and_name_and_type:
-   - dump/raw/cv_synthetic/wav.scp
    - speech_mix
    - sound
-   - dump/raw/cv_synthetic/spk1.scp
    - speech_ref1
    - sound
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
optim: adam
optim_conf:
    lr: 0.001
    eps: 1.0e-08
    weight_decay: 1.0e-07
scheduler: reducelronplateau
scheduler_conf:
    mode: min
    factor: 0.7
    patience: 1
init: xavier_uniform
model_conf:
    stft_consistency: false
    loss_type: mask_mse
    mask_type: null
criterions:
-   name: si_snr
    conf:
        eps: 1.0e-07
    wrapper: pit
    wrapper_conf:
        weight: 1.0
        independent_perm: true
use_preprocessor: false
encoder: stft
encoder_conf:
    n_fft: 320
    hop_length: 160
separator: tcn
separator_conf:
    num_spk: 1
    layer: 4
    stack: 3
    bottleneck_dim: 128
    hidden_dim: 512
    kernel: 3
    causal: true
    norm_type: gLN
    nonlinear: relu
decoder: stft
decoder_conf:
    n_fft: 320
    hop_length: 160
required:
- output_dir
version: '202204'
distributed: true

Citing ESPnet

@inproceedings{watanabe2018espnet,
  author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
  title={{ESPnet}: End-to-End Speech Processing Toolkit},
  year={2018},
  booktitle={Proceedings of Interspeech},
  pages={2207--2211},
  doi={10.21437/Interspeech.2018-1456},
  url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}


@inproceedings{ESPnet-SE,
  author = {Chenda Li and Jing Shi and Wangyou Zhang and Aswin Shanmugam Subramanian and Xuankai Chang and 
  Naoyuki Kamo and Moto Hira and Tomoki Hayashi and Christoph B{"{o}}ddeker and Zhuo Chen and Shinji Watanabe},
  title = {ESPnet-SE: End-To-End Speech Enhancement and Separation Toolkit Designed for {ASR} Integration},
  booktitle = {{IEEE} Spoken Language Technology Workshop, {SLT} 2021, Shenzhen, China, January 19-22, 2021},
  pages = {785--792},
  publisher = {{IEEE}},
  year = {2021},
  url = {https://doi.org/10.1109/SLT48900.2021.9383615},
  doi = {10.1109/SLT48900.2021.9383615},
  timestamp = {Mon, 12 Apr 2021 17:08:59 +0200},
  biburl = {https://dblp.org/rec/conf/slt/Li0ZSCKHHBC021.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

or arXiv:

@misc{watanabe2018espnet,
  title={ESPnet: End-to-End Speech Processing Toolkit}, 
  author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
  year={2018},
  eprint={1804.00015},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}
Downloads last month
1
Inference Examples
Inference API (serverless) does not yet support espnet models for this pipeline type.