See axolotl config
axolotl version: 0.4.0
base_model: maywell/Llama-3-Ko-Luxia-Instruct
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: "../data/generated_ds.json"
type: alpaca
conversation: chatml
dataset_prepared_path: ../data/dataset_v2_pre
val_set_size: 0.05
output_dir: ../data/output/1min-v2-luxia-8b
sequence_len: 1024
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 10
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 2e-6
train_on_inputs: false
group_by_length: false
bf16: auto
fp16: null
tf32: false
gradient_checkpointing: true
early_stopping_patience: null
resume_from_checkpoint: null
local_rank: null
logging_steps: 1
xformers_attention: null
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
eval_table_size: null
eval_max_new_tokens: 128
saves_per_epoch: 1
save_total_limit: 4
debug: true
deepspeed: deepspeed_configs/zero2.json
weight_decay: 0.0
special_tokens:
pad_token: <|end_of_text|>
data/output/1min-v2-luxia-8b
This model is a fine-tuned version of maywell/Llama-3-Ko-Luxia-Instruct on the manipulated instructkr/ko_youtube_transcription_v2_filtered dataset. It achieves the following results on the evaluation set:
- Loss: 2.0986
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 7
- gradient_accumulation_steps: 4
- total_train_batch_size: 28
- total_eval_batch_size: 7
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.6145 | 0.0513 | 1 | 2.7217 |
2.7668 | 0.2564 | 5 | 2.7018 |
2.6304 | 0.5128 | 10 | 2.5065 |
2.3635 | 0.7692 | 15 | 2.3580 |
2.4553 | 1.0256 | 20 | 2.2813 |
2.2344 | 1.2436 | 25 | 2.2339 |
2.4562 | 1.5 | 30 | 2.2017 |
2.0943 | 1.7564 | 35 | 2.1726 |
2.0695 | 2.0128 | 40 | 2.1425 |
1.8616 | 2.2308 | 45 | 2.1171 |
2.0498 | 2.4872 | 50 | 2.1040 |
1.9028 | 2.7436 | 55 | 2.0984 |
1.9057 | 3.0 | 60 | 2.0841 |
1.7464 | 3.2179 | 65 | 2.0784 |
1.8284 | 3.4744 | 70 | 2.0788 |
1.8866 | 3.7308 | 75 | 2.0761 |
1.8927 | 3.9872 | 80 | 2.0673 |
1.5778 | 4.2051 | 85 | 2.0779 |
1.7274 | 4.4615 | 90 | 2.0934 |
1.7431 | 4.7179 | 95 | 2.0652 |
1.8728 | 4.9744 | 100 | 2.0618 |
1.5729 | 5.1923 | 105 | 2.0837 |
1.4631 | 5.4487 | 110 | 2.0873 |
1.4758 | 5.7051 | 115 | 2.0744 |
1.5289 | 5.9615 | 120 | 2.0899 |
1.515 | 6.1795 | 125 | 2.0919 |
1.5757 | 6.4359 | 130 | 2.0978 |
1.5392 | 6.6923 | 135 | 2.0986 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 24
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.