esunn commited on
Commit
a566f06
·
verified ·
1 Parent(s): a846016

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +160 -0
README.md ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama3
3
+ base_model: maywell/Llama-3-Ko-Luxia-Instruct
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: data/output/1min-v2-luxia-8b
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
15
+ <details><summary>See axolotl config</summary>
16
+
17
+ axolotl version: `0.4.0`
18
+ ```yaml
19
+ base_model: maywell/Llama-3-Ko-Luxia-Instruct
20
+ trust_remote_code: true
21
+ load_in_8bit: false
22
+ load_in_4bit: false
23
+ strict: false
24
+ datasets:
25
+ - path: "../data/generated_ds.json"
26
+ type: alpaca
27
+ conversation: chatml
28
+ dataset_prepared_path: ../data/dataset_v2_pre
29
+ val_set_size: 0.05
30
+ output_dir: ../data/output/1min-v2-luxia-8b
31
+ sequence_len: 1024
32
+ sample_packing: true
33
+ pad_to_sequence_len: true
34
+ eval_sample_packing: false
35
+ wandb_project:
36
+ wandb_entity:
37
+ wandb_watch:
38
+ wandb_name:
39
+ wandb_log_model:
40
+ gradient_accumulation_steps: 4
41
+ micro_batch_size: 1
42
+ num_epochs: 10
43
+ optimizer: adamw_bnb_8bit
44
+ lr_scheduler: cosine
45
+ learning_rate: 2e-6
46
+ train_on_inputs: false
47
+ group_by_length: false
48
+ bf16: auto
49
+ fp16: null
50
+ tf32: false
51
+ gradient_checkpointing: true
52
+ early_stopping_patience: null
53
+ resume_from_checkpoint: null
54
+ local_rank: null
55
+ logging_steps: 1
56
+ xformers_attention: null
57
+ flash_attention: true
58
+ warmup_steps: 10
59
+ evals_per_epoch: 4
60
+ eval_table_size: null
61
+ eval_max_new_tokens: 128
62
+ saves_per_epoch: 1
63
+ save_total_limit: 4
64
+ debug: true
65
+ deepspeed: deepspeed_configs/zero2.json
66
+ weight_decay: 0.0
67
+ special_tokens:
68
+ pad_token: <|end_of_text|>
69
+ ```
70
+
71
+ </details><br>
72
+
73
+ # data/output/1min-v2-luxia-8b
74
+
75
+ This model is a fine-tuned version of [maywell/Llama-3-Ko-Luxia-Instruct](https://huggingface.co/maywell/Llama-3-Ko-Luxia-Instruct) on the None dataset.
76
+ It achieves the following results on the evaluation set:
77
+ - Loss: 2.1100
78
+
79
+ ## Model description
80
+
81
+ More information needed
82
+
83
+ ## Intended uses & limitations
84
+
85
+ More information needed
86
+
87
+ ## Training and evaluation data
88
+
89
+ More information needed
90
+
91
+ ## Training procedure
92
+
93
+ ### Training hyperparameters
94
+
95
+ The following hyperparameters were used during training:
96
+ - learning_rate: 2e-06
97
+ - train_batch_size: 1
98
+ - eval_batch_size: 1
99
+ - seed: 42
100
+ - distributed_type: multi-GPU
101
+ - num_devices: 7
102
+ - gradient_accumulation_steps: 4
103
+ - total_train_batch_size: 28
104
+ - total_eval_batch_size: 7
105
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
106
+ - lr_scheduler_type: cosine
107
+ - lr_scheduler_warmup_steps: 10
108
+ - num_epochs: 10
109
+
110
+ ### Training results
111
+
112
+ | Training Loss | Epoch | Step | Validation Loss |
113
+ |:-------------:|:------:|:----:|:---------------:|
114
+ | 2.6145 | 0.0513 | 1 | 2.7217 |
115
+ | 2.7668 | 0.2564 | 5 | 2.7018 |
116
+ | 2.6304 | 0.5128 | 10 | 2.5065 |
117
+ | 2.3635 | 0.7692 | 15 | 2.3580 |
118
+ | 2.4553 | 1.0256 | 20 | 2.2813 |
119
+ | 2.2344 | 1.2436 | 25 | 2.2339 |
120
+ | 2.4562 | 1.5 | 30 | 2.2017 |
121
+ | 2.0943 | 1.7564 | 35 | 2.1726 |
122
+ | 2.0695 | 2.0128 | 40 | 2.1425 |
123
+ | 1.8616 | 2.2308 | 45 | 2.1171 |
124
+ | 2.0498 | 2.4872 | 50 | 2.1040 |
125
+ | 1.9028 | 2.7436 | 55 | 2.0984 |
126
+ | 1.9057 | 3.0 | 60 | 2.0841 |
127
+ | 1.7464 | 3.2179 | 65 | 2.0784 |
128
+ | 1.8284 | 3.4744 | 70 | 2.0788 |
129
+ | 1.8866 | 3.7308 | 75 | 2.0761 |
130
+ | 1.8927 | 3.9872 | 80 | 2.0673 |
131
+ | 1.5778 | 4.2051 | 85 | 2.0779 |
132
+ | 1.7274 | 4.4615 | 90 | 2.0934 |
133
+ | 1.7431 | 4.7179 | 95 | 2.0652 |
134
+ | 1.8728 | 4.9744 | 100 | 2.0618 |
135
+ | 1.5729 | 5.1923 | 105 | 2.0837 |
136
+ | 1.4631 | 5.4487 | 110 | 2.0873 |
137
+ | 1.4758 | 5.7051 | 115 | 2.0744 |
138
+ | 1.5289 | 5.9615 | 120 | 2.0899 |
139
+ | 1.515 | 6.1795 | 125 | 2.0919 |
140
+ | 1.5757 | 6.4359 | 130 | 2.0978 |
141
+ | 1.5392 | 6.6923 | 135 | 2.0986 |
142
+ | 1.5764 | 6.9487 | 140 | 2.0977 |
143
+ | 1.4178 | 7.1667 | 145 | 2.0938 |
144
+ | 1.5983 | 7.4231 | 150 | 2.1006 |
145
+ | 1.5096 | 7.6795 | 155 | 2.1044 |
146
+ | 1.483 | 7.9359 | 160 | 2.1065 |
147
+ | 1.4619 | 8.1538 | 165 | 2.1057 |
148
+ | 1.3028 | 8.4103 | 170 | 2.1074 |
149
+ | 1.4681 | 8.6667 | 175 | 2.1090 |
150
+ | 1.4215 | 8.9231 | 180 | 2.1089 |
151
+ | 1.4686 | 9.1410 | 185 | 2.1094 |
152
+ | 1.5154 | 9.3974 | 190 | 2.1100 |
153
+
154
+
155
+ ### Framework versions
156
+
157
+ - Transformers 4.40.2
158
+ - Pytorch 2.1.2+cu118
159
+ - Datasets 2.19.1
160
+ - Tokenizers 0.19.1