k2e-20s_asr-scr_w2v2-base_004
This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.6279
- Per: 0.1742
- Pcc: 0.5623
- Ctc Loss: 0.5582
- Mse Loss: 1.0308
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 1
- seed: 1234
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2235
- training_steps: 22350
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Per | Pcc | Ctc Loss | Mse Loss |
---|---|---|---|---|---|---|---|
19.1543 | 3.0 | 2235 | 4.5048 | 0.9890 | 0.5904 | 3.8056 | 0.7652 |
4.3704 | 6.01 | 4470 | 4.4024 | 0.9890 | 0.5979 | 3.7604 | 0.8119 |
3.8685 | 9.01 | 6705 | 4.2418 | 0.9890 | 0.5629 | 3.5307 | 0.9394 |
2.968 | 12.02 | 8940 | 3.0058 | 0.5972 | 0.5624 | 1.9356 | 1.1595 |
1.4899 | 15.02 | 11175 | 1.8180 | 0.2433 | 0.5595 | 0.9015 | 0.9148 |
0.9431 | 18.02 | 13410 | 1.8391 | 0.2057 | 0.5576 | 0.6985 | 1.0942 |
0.7475 | 21.03 | 15645 | 1.6988 | 0.1896 | 0.5583 | 0.6179 | 1.0382 |
0.6357 | 24.03 | 17880 | 1.5647 | 0.1799 | 0.5494 | 0.5862 | 0.9522 |
0.5695 | 27.04 | 20115 | 1.6835 | 0.1758 | 0.5604 | 0.5648 | 1.0716 |
0.5288 | 30.04 | 22350 | 1.6279 | 0.1742 | 0.5623 | 0.5582 | 1.0308 |
Framework versions
- Transformers 4.38.1
- Pytorch 2.0.1
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 0
Model tree for excalibur12/k2e-20s_asr-scr_w2v2-base_004
Base model
facebook/wav2vec2-base