excalibur12's picture
End of training
a5202d9 verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-large
tags:
  - generated_from_trainer
model-index:
  - name: k2e-20s_asr-scr_w2v2-large_001
    results: []

k2e-20s_asr-scr_w2v2-large_001

This model is a fine-tuned version of facebook/wav2vec2-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7509
  • Per: 0.1453
  • Pcc: 0.6324
  • Ctc Loss: 0.5111
  • Mse Loss: 1.2263

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 1
  • seed: 1111
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2235
  • training_steps: 22350
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Per Pcc Ctc Loss Mse Loss
14.3265 3.0 2235 4.6461 0.9890 0.6160 3.6176 1.0856
3.4446 6.01 4470 2.8757 0.3498 0.6516 1.0729 1.7895
1.5549 9.01 6705 2.0517 0.1846 0.6507 0.6672 1.3503
1.1194 12.02 8940 1.8625 0.1650 0.6443 0.5914 1.2388
0.9031 15.02 11175 1.8899 0.1554 0.6312 0.5473 1.3054
0.7614 18.02 13410 1.5491 0.1522 0.6307 0.5349 1.0200
0.6483 21.03 15645 1.8357 0.1481 0.6304 0.5215 1.2852
0.5561 24.03 17880 2.0576 0.1468 0.6263 0.5191 1.4774
0.5108 27.04 20115 1.8949 0.1452 0.6351 0.5090 1.3489
0.4778 30.04 22350 1.7509 0.1453 0.6324 0.5111 1.2263

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.0.1
  • Datasets 2.16.1
  • Tokenizers 0.15.2