nia037-k2e_asr-scoring_wav2vec2-xls-r-300m_001

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3285
  • Per: 0.1553
  • Pcc: 0.5941
  • Ctc Loss: 0.4571
  • Mse Loss: 0.8435

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 1
  • seed: 1111
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 750
  • training_steps: 7500

Training results

Training Loss Epoch Step Validation Loss Per Pcc Ctc Loss Mse Loss
16.8126 1.01 750 4.5828 0.9890 0.4831 3.7272 1.0554
4.3091 2.02 1500 3.9355 0.9627 0.5450 3.5438 0.8425
3.8448 3.02 2250 3.0227 0.7172 0.5510 2.5638 0.8462
2.2291 4.03 3000 1.6022 0.2220 0.5692 0.6960 0.8338
1.6362 5.04 3750 1.4686 0.1785 0.5888 0.5407 0.8311
1.4014 6.05 4500 1.3709 0.1676 0.6016 0.4993 0.7934
1.1905 7.06 5250 1.3089 0.1609 0.5990 0.4759 0.7807
1.0064 8.06 6000 1.3754 0.1574 0.5915 0.4659 0.8560
0.8526 9.07 6750 1.3020 0.1563 0.6048 0.4602 0.8179
0.7319 10.08 7500 1.3285 0.1553 0.5941 0.4571 0.8435

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.0.1
  • Datasets 2.16.1
  • Tokenizers 0.15.2
Downloads last month
8
Safetensors
Model size
316M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for excalibur12/k2e_asr-scr_w2v2-xls-r-300m_001

Finetuned
(545)
this model