File size: 21,639 Bytes
18a1462
 
 
 
 
f024d1d
 
 
 
 
 
 
 
 
 
 
99e010d
d9a0d0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5cf678
d9a0d0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c470219
d9a0d0e
 
 
 
d5cf678
 
 
 
 
d9a0d0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8909940
d9a0d0e
124f469
99e010d
 
 
d08596f
 
99e010d
 
124f469
 
f024d1d
d9a0d0e
99e010d
 
 
d08596f
 
 
 
 
7a2ccff
 
99e010d
5e0c76e
99e010d
a4d3600
99e010d
a4d3600
 
 
 
 
 
99e010d
a4d3600
99e010d
a4d3600
99e010d
a4d3600
99e010d
a4d3600
bf20fdb
 
 
a4d3600
 
 
 
 
99e010d
a4d3600
99e010d
a4d3600
 
 
 
 
99e010d
a4d3600
99e010d
a4d3600
99e010d
a4d3600
99e010d
a4d3600
 
99e010d
a4d3600
 
99e010d
a4d3600
 
 
 
99e010d
a4d3600
 
 
99e010d
a4d3600
 
 
 
 
 
 
99e010d
a4d3600
 
 
99e010d
a4d3600
99e010d
a4d3600
 
 
 
 
 
 
 
 
 
 
99e010d
 
a4d3600
 
 
 
99e010d
a4d3600
99e010d
a4d3600
 
 
 
 
99e010d
 
a4d3600
 
 
99e010d
a4d3600
99e010d
a4d3600
 
 
99e010d
a4d3600
 
 
99e010d
a4d3600
 
99e010d
a4d3600
99e010d
a4d3600
 
 
99e010d
a4d3600
99e010d
a4d3600
 
99e010d
a4d3600
 
 
99e010d
a4d3600
 
 
 
 
 
 
99e010d
a4d3600
 
 
 
d9a0d0e
99e010d
a4d3600
d9a0d0e
99e010d
a4d3600
 
99e010d
a4d3600
 
 
 
 
99e010d
a4d3600
d9a0d0e
a4d3600
 
99e010d
a4d3600
 
99e010d
a4d3600
99e010d
a4d3600
 
 
 
 
 
99e010d
 
a4d3600
 
 
 
 
 
99e010d
a4d3600
99e010d
a4d3600
 
 
 
 
99e010d
a4d3600
 
99e010d
a4d3600
99e010d
a4d3600
99e010d
a4d3600
 
99e010d
a4d3600
 
 
99e010d
a4d3600
 
99e010d
a4d3600
 
 
99e010d
a4d3600
99e010d
a4d3600
 
 
99e010d
a4d3600
 
 
99e010d
 
a4d3600
 
 
 
 
 
 
99e010d
a4d3600
 
 
 
99e010d
a4d3600
99e010d
a4d3600
99e010d
a4d3600
 
 
99e010d
a4d3600
99e010d
a4d3600
 
 
99e010d
a4d3600
99e010d
a4d3600
99e010d
d9a0d0e
a4d3600
 
 
 
 
99e010d
a4d3600
99e010d
d5cf678
 
 
 
 
99e010d
a4d3600
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99e010d
a4d3600
99e010d
a4d3600
99e010d
d9a0d0e
99e010d
a4d3600
99e010d
d9a0d0e
99e010d
a4d3600
99e010d
d9a0d0e
99e010d
d9a0d0e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
---
license: cc-by-nc-sa-4.0
language:
- en
- tr
tags:
- eeg
- brain
- deeplearning
- artificialintelligence
- ai
- model
- emotions
- neuroscince
- neura
- neuro
---
# bai Modelleri

## Model Detayları

#### bai Modelleri EEG verilerini okumak için eğitilmiştir. Bu modellerin eğitildiği veri setleri Neurazum tarafından gizli tutulmaktadır. Derin öğrenme yöntemleri ile eğitilir ve çok yüksek doğruluk oranları ile EEG üzerinde hassas bir şekilde çalışabilir. Elektrot sayısına bakılmaksızın her türlü EEG cihazı üzerinde çalışabilmektedir (Optimizasyon ve iyileştirmeler devam etmektedir). Nörobilim alanındaki geri kalmışlığa, ilkelliğe ve hata paylarına son vermeyi hedeflemektedir.

### Model Tanımı

- **Geliştirici:** _Neurazum_
- **Yayımcı:** _Eyüp İpler_
- **Model Tipi:** _EEG_
- **Lisans:** _CC-BY-NC-SA-4.0_

## Kullanımlar

**Bu modellerdeki amacımız;**

- _Kişinin duygusunu anlık olarak analiz etmek,_
- _Epilepsi ve MS gibi tehlikeli hastalıkları nöbet öncesi erken uyarmak ve gerekli önlemleri almak,_
- _Alzheimer hastaları için erken teşhis ve unutulan kelimeleri bai modeline aktararak hafızada tutmak,_
- _Günlük hayatta kullanılabilecek bir sesli yapay zeka asistanının geliştirilmesi,_
- _İnsan vücudunda bulunan 12 adet kraniyal sinir sayesinde hastalık teşhisinde hata payının azaltılması._

## Direkt Kullanımlar

**Klasik Kullanım:**

```python
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from tensorflow.keras.models import load_model
import matplotlib.pyplot as plt

model_path = 'model-yolu'

model = load_model(model_path)

model_name = model_path.split('/')[-1].split('.')[0]

plt.figure(figsize=(10, 6))
plt.title(f'Duygu Tahmini ({model_name})')
plt.xlabel('Zaman')
plt.ylabel('Sınıf')
plt.legend(loc='upper right')
plt.grid(True)
plt.show()
model.summary()
```

**Tahmin Testi:**

```python
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from tensorflow.keras.models import load_model

model_path = 'model-yolu'

model = load_model(model_path)

scaler = StandardScaler()

predictions = model.predict(X_new_reshaped)
predicted_labels = np.argmax(predictions, axis=1)

label_mapping = {'NEGATIVE': 0, 'NEUTRAL': 1, 'POSITIVE': 2}
label_mapping_reverse = {v: k for k, v in label_mapping.items()}

#new_input = np.array([[23, 465, 12, 9653] * 637])
new_input = np.random.rand(1, 2548)  # 1 örnek ve 2548 özellik
new_input_scaled = scaler.fit_transform(new_input)
new_input_reshaped = new_input_scaled.reshape((new_input_scaled.shape[0], 1, new_input_scaled.shape[1]))

new_prediction = model.predict(new_input_reshaped)
predicted_label = np.argmax(new_prediction, axis=1)[0]
predicted_emotion = label_mapping_reverse[predicted_label]

# TR Lang
if predicted_emotion == 'NEGATIVE':
    predicted_emotion = 'Negatif'
elif predicted_emotion == 'NEUTRAL':
    predicted_emotion = 'Nötr'
elif predicted_emotion == 'POSITIVE':
    predicted_emotion = 'Pozitif'

print(f'Girilen Veri: {new_input}')
print(f'Tahmin Edilen Duygu: {predicted_emotion}')
```
**Gerçek Zamanlı Kullanım (Modelsiz):**

```python
import sys
import pyaudio
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.lines import Line2D
from PyQt5.QtWidgets import QApplication, QMainWindow, QPushButton, QVBoxLayout, QWidget
from PyQt5.QtCore import QTimer
from PyQt5.QtGui import QIcon
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar


CHUNK = 1000  # Chunk size
FORMAT = pyaudio.paInt16  # Data type (16-bit PCM)
CHANNELS = 1  # (Mono)
RATE = 2000  # Sample rate (Hz)

p = pyaudio.PyAudio()

stream = p.open(format=FORMAT,
                channels=CHANNELS,
                rate=RATE,
                input=True,
                frames_per_buffer=CHUNK)


class MainWindow(QMainWindow):
    def __init__(self):
        super().__init__()

        self.initUI()

        self.timer = QTimer()
        self.timer.timeout.connect(self.update_plot)
        self.timer.start(1)

    def initUI(self):
        self.setWindowTitle('EEG Monitoring by Neurazum')
        self.setWindowIcon(QIcon('/neurazumicon.ico'))

        self.central_widget = QWidget()
        self.setCentralWidget(self.central_widget)

        self.layout = QVBoxLayout(self.central_widget)

        self.fig, (self.ax1, self.ax2) = plt.subplots(2, 1, figsize=(12, 8), gridspec_kw={'height_ratios': [9, 1]})
        self.fig.tight_layout()
        self.canvas = FigureCanvas(self.fig)

        self.layout.addWidget(self.canvas)

        self.toolbar = NavigationToolbar(self.canvas, self)
        self.layout.addWidget(self.toolbar)

        self.x = np.arange(0, 2 * CHUNK, 2)
        self.line1, = self.ax1.plot(self.x, np.random.rand(CHUNK))
        self.line2, = self.ax2.plot(self.x, np.random.rand(CHUNK))

        self.legend_elements = [
            Line2D([0, 4], [0], color='yellow', lw=4, label='DELTA (0hz-4hz)'),
            Line2D([4, 7], [0], color='blue', lw=4, label='TETA (4hz-7hz)'),
            Line2D([8, 12], [0], color='green', lw=4, label='ALFA (8hz-12hz)'),
            Line2D([12, 30], [0], color='red', lw=4, label='BETA (12hz-30hz)'),
            Line2D([30, 100], [0], color='purple', lw=4, label='GAMA (30hz-100hz)')
        ]

    def update_plot(self):
        data = np.frombuffer(stream.read(CHUNK), dtype=np.int16)
        data = np.abs(data)
        voltage_data = data * (3.3 / 1024)  # Voltajı "mV"'ye dönüştürme
        frequency = voltage_data / (RATE * 1000) # Frekans hesaplama

        self.line1.set_ydata(data)
        self.line2.set_ydata(frequency)

        for coll in self.ax1.collections:
            coll.remove()

        self.ax1.fill_between(self.x, data, where=((self.x >= 0) & (self.x <= 4)), color='yellow', alpha=1)
        self.ax1.fill_between(self.x, data, where=((self.x >= 4) & (self.x <= 7)), color='blue', alpha=1)
        self.ax1.fill_between(self.x, data, where=((self.x >= 8) & (self.x <= 12)), color='green', alpha=1)
        self.ax1.fill_between(self.x, data, where=((self.x >= 12) & (self.x <= 30)), color='red', alpha=1)
        self.ax1.fill_between(self.x, data, where=((self.x >= 30) & (self.x <= 100)), color='purple', alpha=1)

        self.ax1.legend(handles=self.legend_elements, loc='upper right')
        self.ax1.set_ylabel('Genlik (uV)')
        self.ax1.set_xlabel('Frekans (Hz)')
        self.ax1.set_title('Frekans ve Genlik Değerleri')

        self.ax2.set_ylabel('Voltaj (mV)')
        self.ax2.set_xlabel('Zaman')

        self.canvas.draw()

    def close_application(self):
        self.timer.stop()
        stream.stop_stream()
        stream.close()
        p.terminate()
        sys.exit(app.exec_())


if __name__ == '__main__':
    app = QApplication(sys.argv)
    mainWin = MainWindow()
    mainWin.show()
    sys.exit(app.exec_())
```

**Duyguları İçeren Veri Seti Üzerinde Tahmin:**

```python
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from tensorflow.keras.models import load_model

model_path = 'model-yolu'
new_data_path = 'veri-seti-yolu'

model = load_model(model_path)

new_data = pd.read_csv(new_data_path)

X_new = new_data.drop('label', axis=1)
y_new = new_data['label']

scaler = StandardScaler()
X_new_scaled = scaler.fit_transform(X_new)
X_new_reshaped = X_new_scaled.reshape((X_new_scaled.shape[0], 1, X_new_scaled.shape[1]))

predictions = model.predict(X_new_reshaped)
predicted_labels = np.argmax(predictions, axis=1)

label_mapping = {'NEGATIVE': 0, 'NEUTRAL': 1, 'POSITIVE': 2}
label_mapping_reverse = {v: k for k, v in label_mapping.items()}
actual_labels = y_new.replace(label_mapping).values

accuracy = np.mean(predicted_labels == actual_labels)

new_input = np.random.rand(2548, 2548)  # 1 örnek ve 2548 özellik
new_input_scaled = scaler.transform(new_input)
new_input_reshaped = new_input_scaled.reshape((new_input_scaled.shape[0], 1, new_input_scaled.shape[1]))

new_prediction = model.predict(new_input_reshaped)
predicted_label = np.argmax(new_prediction, axis=1)[0]
predicted_emotion = label_mapping_reverse[predicted_label]


# TR Lang
if predicted_emotion == 'NEGATIVE':
    predicted_emotion = 'Negatif'
elif predicted_emotion == 'NEUTRAL':
    predicted_emotion = 'Nötr'
elif predicted_emotion == 'POSITIVE':
    predicted_emotion = 'Pozitif'

print(f'Giriş Verisi: {new_input}')
print(f'Tahmin Edilen Duygu: {predicted_emotion}')
print(f'Doğruluk: %{accuracy * 100:.5f}')
```

## Önyargı, Riskler ve Kısıtlamalar

**bai Modelleri;**

- _En büyük riski yanlış tahmin etmesidir :),_
- _Herhangi bir kısıtlama bulunmamaktadır (şimdilik),_
- _Beyin sinyallerinden elde edilen veriler kişisel bilgi içermez (çünkü bunlar sadece mV değerleridir). Bu nedenle, bai tarafından yapılan her tahmin sadece bir "TAHMİN" dir._

### Öneriler

- _Çok fazla duygu durum değişikliği yaşamamaya çalışın,_
- _Çok fazla farklı nitelikte düşünce/karar almayın,_
- _Çok fazla hata yaptığında, yanlış cevap verdiğini düşünmeyin (doğru cevap verdiğini farz edin),_

**Not: Bu öğeler sadece modelin daha iyi çalışması için önerilerdir. Herhangi bir risk taşımazlar.**

## Modele Nasıl Başlanır

- Modelin içeriğindeki gerekli modülleri kurmak için;
- ```bash
  pip install -r requirements.txt
  ```
- Örnek kullanımla modelin ve veri setinin yolunu yerleştirin.
- Ve dosyayı çalıştırın.

## Değerlendirme

- bai-2.0 => (Doğruluk oranı çok yüksek = %97,93621013133208) (DUYGUSAL SINIFLANDIRMA)
- bai-2.1 => (Doğruluk oranı çok yüksek = %97,93621013133208) (DUYGUSAL SINIFLANDIRMA)
- bai-2.2 => (Doğruluk oranı çok yüksek = %94,8874296435272) (DUYGUSAL SINIFLANDIRMA)
- bai-3.0 Emotion => (Doğruluk oranı çok yüksek = %97,79549718574108) (DUYGUSAL SINIFLANDIRMA)
- bai-3.0 Epilepsy => (Doğruluk oranı yüksek = %68,90829694323143) (EPİLEPSİ NÖBET TESPİTİ)

### Sonuçlar

[![image](https://r.resimlink.com/O7GyMoQL.png)](https://resimlink.com/O7GyMoQL)

[![image](https://r.resimlink.com/gdyCW3RP.png)](https://resimlink.com/gdyCW3RP)

[![image](https://r.resimlink.com/MpH9XS_0E.png)](https://resimlink.com/MpH9XS_0E)

[![image](https://r.resimlink.com/vsyYqJnQ4k.png)](https://resimlink.com/vsyYqJnQ4k)

#### Özet

Özetle bai modelleri, kişinin düşüncelerini ve duygularını öğrenmek ve tahmin etmek için geliştirilmeye devam ediyor.

#### Donanım

Tek ihtiyacınız olan şey EEG!

#### Yazılım

Daha sonra bu EEG cihazını (şimdilik sadece ses girişi ile) yayınladığımız gerçek zamanlı veri izleme uygulamasıyla çalıştırabilirsiniz.

GitHub: https://github.com/neurazum/Realtime-EEG-Monitoring

## Daha Fazla

LinkedIn: https://www.linkedin.com/company/neurazum

### Yazar

Eyüp İpler - https://www.linkedin.com/in/eyupipler/

### İletişim

[email protected]

# --------------------------------------

# bai Models

## Model Details

#### bai Models are trained to read EEG data. The data sets on which these models are trained are kept confidential by Neurazum. It is trained with deep learning methods and can work precisely on EEG with very high accuracy rates. It can work on all kinds of EEG devices regardless of the number of electrodes (Optimisation and improvements are ongoing). It aims to end the backwardness, primitiveness and error margins in the field of neuroscience.

### Model Description

- **Developed by:** _Neurazum_
- **Shared by:** _Eyüp İpler_
- **Model type:** _EEG_
- **License:** _CC-BY-NC-SA-4.0_

## Uses

**Our aim in these models;**

- _To analyse the person's emotion instantly,_
- _To warn dangerous patients such as epilepsy and MS early before the seizure and to take the necessary precautions,_
- _Early diagnosis for Alzheimer's patients and the bai model helps the person by memorising forgotten words,_
- _Development of a voice assistant that can be used in everyday life,_
- _Reducing the margin of error in disease diagnosis thanks to the 12 cranial nerves in the human body._

## Direct Uses

**Classical Use:**

```python
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from tensorflow.keras.models import load_model
import matplotlib.pyplot as plt

model_path = 'model-path'

model = load_model(model_path)

model_name = model_path.split('/')[-1].split('.')[0]

plt.figure(figsize=(10, 6))
plt.title(f'Emotion Prediction ({model_name})')
plt.xlabel('Time')
plt.ylabel('Class')
plt.legend(loc='upper right')
plt.grid(True)
plt.show()
model.summary()
```

**Prediction Test:**

```python
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from tensorflow.keras.models import load_model

model_path = 'model-path'

model = load_model(model_path)

scaler = StandardScaler()

predictions = model.predict(X_new_reshaped)
predicted_labels = np.argmax(predictions, axis=1)

label_mapping = {'NEGATIVE': 0, 'NEUTRAL': 1, 'POSITIVE': 2}
label_mapping_reverse = {v: k for k, v in label_mapping.items()}

#new_input = np.array([[23, 465, 12, 9653] * 637])
new_input = np.random.rand(1, 2548)  # 1 sample and 2548 features
new_input_scaled = scaler.fit_transform(new_input)
new_input_reshaped = new_input_scaled.reshape((new_input_scaled.shape[0], 1, new_input_scaled.shape[1]))

new_prediction = model.predict(new_input_reshaped)
predicted_label = np.argmax(new_prediction, axis=1)[0]
predicted_emotion = label_mapping_reverse[predicted_label]

# TR Lang
if predicted_emotion == 'NEGATIVE':
    predicted_emotion = 'Negatif'
elif predicted_emotion == 'NEUTRAL':
    predicted_emotion = 'Nötr'
elif predicted_emotion == 'POSITIVE':
    predicted_emotion = 'Pozitif'

print(f'Input Data: {new_input}')
print(f'Predicted Emotion: {predicted_emotion}')
```

**Realtime Use (EEG Monitoring without AI Model):**

```python
import sys
import pyaudio
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.lines import Line2D
from PyQt5.QtWidgets import QApplication, QMainWindow, QPushButton, QVBoxLayout, QWidget
from PyQt5.QtCore import QTimer
from PyQt5.QtGui import QIcon
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar


CHUNK = 1000  # Chunk size
FORMAT = pyaudio.paInt16  # Data type (16-bit PCM)
CHANNELS = 1  # (Mono)
RATE = 2000  # Sample rate (Hz)

p = pyaudio.PyAudio()

stream = p.open(format=FORMAT,
                channels=CHANNELS,
                rate=RATE,
                input=True,
                frames_per_buffer=CHUNK)


class MainWindow(QMainWindow):
    def __init__(self):
        super().__init__()

        self.initUI()

        self.timer = QTimer()
        self.timer.timeout.connect(self.update_plot)
        self.timer.start(1)

    def initUI(self):
        self.setWindowTitle('EEG Monitoring by Neurazum')
        self.setWindowIcon(QIcon('/neurazumicon.ico'))

        self.central_widget = QWidget()
        self.setCentralWidget(self.central_widget)

        self.layout = QVBoxLayout(self.central_widget)

        self.fig, (self.ax1, self.ax2) = plt.subplots(2, 1, figsize=(12, 8), gridspec_kw={'height_ratios': [9, 1]})
        self.fig.tight_layout()
        self.canvas = FigureCanvas(self.fig)

        self.layout.addWidget(self.canvas)

        self.toolbar = NavigationToolbar(self.canvas, self)
        self.layout.addWidget(self.toolbar)

        self.x = np.arange(0, 2 * CHUNK, 2)
        self.line1, = self.ax1.plot(self.x, np.random.rand(CHUNK))
        self.line2, = self.ax2.plot(self.x, np.random.rand(CHUNK))

        self.legend_elements = [
            Line2D([0, 4], [0], color='yellow', lw=4, label='DELTA (0hz-4hz)'),
            Line2D([4, 7], [0], color='blue', lw=4, label='THETA (4hz-7hz)'),
            Line2D([8, 12], [0], color='green', lw=4, label='ALPHA (8hz-12hz)'),
            Line2D([12, 30], [0], color='red', lw=4, label='BETA (12hz-30hz)'),
            Line2D([30, 100], [0], color='purple', lw=4, label='GAMMA (30hz-100hz)')
        ]

    def update_plot(self):
        data = np.frombuffer(stream.read(CHUNK), dtype=np.int16)
        data = np.abs(data)
        voltage_data = data * (3.3 / 1024)  # Voltage to "mV"
        frequency = voltage_data / (RATE * 1000) # Calculate to  frequency

        self.line1.set_ydata(data)
        self.line2.set_ydata(frequency)

        for coll in self.ax1.collections:
            coll.remove()

        self.ax1.fill_between(self.x, data, where=((self.x >= 0) & (self.x <= 4)), color='yellow', alpha=1)
        self.ax1.fill_between(self.x, data, where=((self.x >= 4) & (self.x <= 7)), color='blue', alpha=1)
        self.ax1.fill_between(self.x, data, where=((self.x >= 8) & (self.x <= 12)), color='green', alpha=1)
        self.ax1.fill_between(self.x, data, where=((self.x >= 12) & (self.x <= 30)), color='red', alpha=1)
        self.ax1.fill_between(self.x, data, where=((self.x >= 30) & (self.x <= 100)), color='purple', alpha=1)

        self.ax1.legend(handles=self.legend_elements, loc='upper right')
        self.ax1.set_ylabel('Amplitude (uV)')
        self.ax1.set_xlabel('Frequency (Hz)')
        self.ax1.set_title('Frequency and mV')

        self.ax2.set_ylabel('Voltage (mV)')
        self.ax2.set_xlabel('Time')

        self.canvas.draw()

    def close_application(self):
        self.timer.stop()
        stream.stop_stream()
        stream.close()
        p.terminate()
        sys.exit(app.exec_())


if __name__ == '__main__':
    app = QApplication(sys.argv)
    mainWin = MainWindow()
    mainWin.show()
    sys.exit(app.exec_())
```

**Emotion Dataset Prediction Use:**

```python
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from tensorflow.keras.models import load_model

model_path = 'model-path'
new_data_path = 'dataset-path'

model = load_model(model_path)

new_data = pd.read_csv(new_data_path)

X_new = new_data.drop('label', axis=1)
y_new = new_data['label']

scaler = StandardScaler()
X_new_scaled = scaler.fit_transform(X_new)
X_new_reshaped = X_new_scaled.reshape((X_new_scaled.shape[0], 1, X_new_scaled.shape[1]))

predictions = model.predict(X_new_reshaped)
predicted_labels = np.argmax(predictions, axis=1)

label_mapping = {'NEGATIVE': 0, 'NEUTRAL': 1, 'POSITIVE': 2}
label_mapping_reverse = {v: k for k, v in label_mapping.items()}
actual_labels = y_new.replace(label_mapping).values

accuracy = np.mean(predicted_labels == actual_labels)

new_input = np.random.rand(2548, 2548)  # 1 sample and 2548 features
new_input_scaled = scaler.transform(new_input)
new_input_reshaped = new_input_scaled.reshape((new_input_scaled.shape[0], 1, new_input_scaled.shape[1]))

new_prediction = model.predict(new_input_reshaped)
predicted_label = np.argmax(new_prediction, axis=1)[0]
predicted_emotion = label_mapping_reverse[predicted_label]


# TR Lang
if predicted_emotion == 'NEGATIVE':
    predicted_emotion = 'Negatif'
elif predicted_emotion == 'NEUTRAL':
    predicted_emotion = 'Nötr'
elif predicted_emotion == 'POSITIVE':
    predicted_emotion = 'Pozitif'

print(f'Inputs: {new_input}')
print(f'Predicted Emotion: {predicted_emotion}')
print(f'Accuracy: %{accuracy * 100:.5f}')
```

## Bias, Risks, and Limitations

**bai Models;**

- _The biggest risk is wrong prediction :),_
- _It does not contain any restrictions in any area (for now),_
- _Data from brain signals do not contain personal information (because they are only mV values). Therefore, every guess made by bai is only a "GUESS"._

### Recommendations

- _Do not experience too many mood changes,_
- _Do not take thoughts/decisions with too many different qualities,_
- _When he/she makes a lot of mistakes, do not think that he/she gave the wrong answer (think of it as giving the correct answer),_

**Note: These items are only recommendations for better operation of the model. They do not carry any risk.**

## How to Get Started with the Model

- To install the necessary modules in the model;
- ```bash
  pip install -r requirements.txt
  ```
- Place the path of the model in the example uses.
- And run the file.

## Evaluation

- bai-2.0 => (Accuracy very high = %97,93621013133208) (EMOTIONAL CLASSIFICATION)
- bai-2.1 => (Accuracy very high = %97,93621013133208) (EMOTIONAL CLASSIFICATION)
- bai-2.2 => (Accuracy very high = %94,8874296435272) (EMOTIONAL CLASSIFICATION)
- bai-3.0 Emotion => (Accuracy very high = %97,79549718574108) (EMOTIONAL CLASSIFICATION)
- bai-3.0 Epilepsy => (Accuracy high = %68,90829694323143) (SEIZURE DETECTION)

### Results

[![image](https://r.resimlink.com/O7GyMoQL.png)](https://resimlink.com/O7GyMoQL)

[![image](https://r.resimlink.com/gdyCW3RP.png)](https://resimlink.com/gdyCW3RP)

[![image](https://r.resimlink.com/MpH9XS_0E.png)](https://resimlink.com/MpH9XS_0E)

[![image](https://r.resimlink.com/vsyYqJnQ4k.png)](https://resimlink.com/vsyYqJnQ4k)

#### Summary

In summary, bai models continue to be developed to learn about and predict a person's thoughts and emotions.

#### Hardware

The EEG is the only hardware!

#### Software

You can then operate this EEG device (for the time being only with audio input) with the real-time data monitoring application we have published.

GitHub: https://github.com/neurazum/Realtime-EEG-Monitoring

## More

LinkedIn: https://www.linkedin.com/company/neurazum

### Author

Eyüp İpler - https://www.linkedin.com/in/eyupipler/

### Contact

[email protected]