|
# bai-2.0 (338787 parametre) |
|
|
|
## EEG üzerinden duygu sınıflandırması yapan ilk kararlı modellerimizden olan "bai-2.0" modeli. |
|
|
|
#### NOT: Gerçek zamanlı EEG veri takibi uygulamasına modeli entegre ederseniz, gerçek zamanlı olarak duygu tahmini yapabilmektedir. Uygulamaya erişebilmek için: https://github.com/neurazum/Realtime-EEG-Monitoring |
|
|
|
## ----------------------------------------------------------------------------------- |
|
|
|
# bai-2.0 (338787 parameters) |
|
|
|
## "bai-2.0" model, one of the first stable models that classifies emotions via EEG. |
|
|
|
#### NOTE: If you integrate the model into a real-time EEG data tracking application, it can predict emotions in real time. To access the application: https://github.com/neurazum/Realtime-EEG-Monitoring |
|
|
|
**Doğruluk/Accuracy: %97.93621013133207** |
|
|
|
## ----------------------------------------------------------------------------------- |
|
|
|
# Kullanım / Usage |
|
|
|
```python |
|
import numpy as np |
|
import pandas as pd |
|
from sklearn.preprocessing import StandardScaler |
|
from tensorflow.keras.models import load_model |
|
import matplotlib.pyplot as plt |
|
|
|
model_path = 'model-path' |
|
|
|
model = load_model(model_path) |
|
|
|
model_name = model_path.split('/')[-1].split('.')[0] |
|
|
|
plt.figure(figsize=(10, 6)) |
|
plt.title(f'Duygu Tahmini ({model_name}.0)') |
|
plt.xlabel('Zaman') |
|
plt.ylabel('Sınıf') |
|
plt.legend(loc='upper right') |
|
plt.grid(True) |
|
plt.show() |
|
model.summary() |
|
``` |
|
|
|
# Tahmin / Prediction |
|
|
|
```python |
|
import numpy as np |
|
import pandas as pd |
|
from sklearn.preprocessing import StandardScaler |
|
from tensorflow.keras.models import load_model |
|
|
|
model_path = 'model-path' |
|
|
|
model = load_model(model_path) |
|
|
|
scaler = StandardScaler() |
|
|
|
predictions = model.predict(X_new_reshaped) |
|
predicted_labels = np.argmax(predictions, axis=1) |
|
|
|
label_mapping = {'NEGATIVE': 0, 'NEUTRAL': 1, 'POSITIVE': 2} |
|
label_mapping_reverse = {v: k for k, v in label_mapping.items()} |
|
|
|
#new_input = np.array([[23, 465, 12, 9653] * 637]) |
|
new_input = np.random.rand(1, 2548) # 1 örnek ve 2548 özellik |
|
new_input_scaled = scaler.fit_transform(new_input) |
|
new_input_reshaped = new_input_scaled.reshape((new_input_scaled.shape[0], 1, new_input_scaled.shape[1])) |
|
|
|
new_prediction = model.predict(new_input_reshaped) |
|
predicted_label = np.argmax(new_prediction, axis=1)[0] |
|
predicted_emotion = label_mapping_reverse[predicted_label] |
|
|
|
if predicted_emotion == 'NEGATIVE': |
|
predicted_emotion = 'Negatif' |
|
elif predicted_emotion == 'NEUTRAL': |
|
predicted_emotion = 'Nötr' |
|
elif predicted_emotion == 'POSITIVE': |
|
predicted_emotion = 'Pozitif' |
|
|
|
print(f'Giriş Verileri: {new_input}') |
|
print(f'Tahmin Edilen Duygu: {predicted_emotion}') |
|
``` |