eyupipler commited on
Commit
97d8f72
1 Parent(s): 2969a31

Update Main Models/bai-3.0 Emotion/README.md

Browse files
Files changed (1) hide show
  1. Main Models/bai-3.0 Emotion/README.md +95 -93
Main Models/bai-3.0 Emotion/README.md CHANGED
@@ -1,94 +1,96 @@
1
- # bai-3.0 Emotion (3549313 parametre)
2
-
3
- ## "bai-3.0 Emotion" modeli, EEG üzerine eğitilmiş dünyanın en büyük üçüncü yapay zeka modelidir. Kişinin duygu durum analizini yapmaktadır.
4
-
5
- #### NOT: Gerçek zamanlı EEG veri takibi uygulamasına modeli entegre ederseniz, gerçek zamanlı olarak duygu tahmini yapabilmektedir. Uygulamaya erişebilmek için: https://github.com/neurazum/Realtime-EEG-Monitoring
6
-
7
- ## -----------------------------------------------------------------------------------
8
-
9
- # bai-3.0 Emotion (3549313 parameters)
10
-
11
- ## The "bai-3.0 Emotion" model is the world's third largest artificial intelligence model trained on EEG. It analyzes the person's emotional state.
12
-
13
- ## NOTE: If you integrate the model into a real-time EEG data tracking application, it can predict emotions in real time. To access the application: https://github.com/neurazum/Realtime-EEG-Monitoring
14
- **Doğruluk/Accuracy: %97,79549718574108**
15
-
16
- # Kullanım / Usage
17
-
18
- ```python
19
- import numpy as np
20
- import pandas as pd
21
- from sklearn.preprocessing import StandardScaler
22
- from tensorflow.keras.models import load_model
23
- import matplotlib.pyplot as plt
24
-
25
- model_path = 'model-path'
26
-
27
- model = load_model(model_path)
28
-
29
- model_name = model_path.split('/')[-1].split('.')[0]
30
-
31
- plt.figure(figsize=(10, 6))
32
- plt.title(f'Duygu Tahmini ({model_name}.2)')
33
- plt.xlabel('Zaman')
34
- plt.ylabel('Sınıf')
35
- plt.legend(loc='upper right')
36
- plt.grid(True)
37
- plt.show()
38
- model.summary()
39
- ```
40
-
41
- # Tahmin / Prediction
42
-
43
- ```python
44
- import numpy as np
45
- import pandas as pd
46
- from sklearn.preprocessing import StandardScaler
47
- from tensorflow.keras.models import load_model
48
-
49
- model_path = 'model-path'
50
-
51
- model = load_model(model_path)
52
-
53
- scaler = StandardScaler()
54
-
55
- predictions = model.predict(X_new_reshaped)
56
- predicted_labels = np.argmax(predictions, axis=1)
57
-
58
- label_mapping = {'NEGATIVE': 0, 'NEUTRAL': 1, 'POSITIVE': 2}
59
- label_mapping_reverse = {v: k for k, v in label_mapping.items()}
60
-
61
- #new_input = np.array([[23, 465, 12, 9653] * 637])
62
- new_input = np.random.rand(1, 2548) # 1 örnek ve 2548 özellik
63
- new_input_scaled = scaler.fit_transform(new_input)
64
- new_input_reshaped = new_input_scaled.reshape((new_input_scaled.shape[0], 1, new_input_scaled.shape[1]))
65
-
66
- new_prediction = model.predict(new_input_reshaped)
67
- predicted_label = np.argmax(new_prediction, axis=1)[0]
68
- predicted_emotion = label_mapping_reverse[predicted_label]
69
-
70
- if predicted_emotion == 'NEGATIVE':
71
- predicted_emotion = 'Negatif'
72
- elif predicted_emotion == 'NEUTRAL':
73
- predicted_emotion = 'Nötr'
74
- elif predicted_emotion == 'POSITIVE':
75
- predicted_emotion = 'Pozitif'
76
-
77
- print(f'Giriş Verileri: {new_input}')
78
- print(f'Tahmin Edilen Duygu: {predicted_emotion}')
79
- ```
80
-
81
- # Python Sürümü / Python Version
82
-
83
- ### 3.9 <=> 3.13
84
-
85
- # Modüller / Modules
86
-
87
- ```bash
88
- matplotlib==3.8.0
89
- matplotlib-inline==0.1.6
90
- numpy==1.26.4
91
- pandas==2.2.2
92
- scikit-learn==1.3.1
93
- tensorflow==2.15.0
 
 
94
  ```
 
1
+ # bai-3.0 Emotion (3549313 parametre)
2
+
3
+ ## "bai-3.0 Emotion" modeli, EEG üzerine eğitilmiş dünyanın en büyük üçüncü yapay zeka modelidir. Kişinin duygu durum analizini yapmaktadır.
4
+
5
+ #### NOT: Gerçek zamanlı EEG veri takibi uygulamasına modeli entegre ederseniz, gerçek zamanlı olarak duygu tahmini yapabilmektedir. Uygulamaya erişebilmek için: https://github.com/neurazum/Realtime-EEG-Monitoring
6
+
7
+ ## -----------------------------------------------------------------------------------
8
+
9
+ # bai-3.0 Emotion (3549313 parameters)
10
+
11
+ ## The "bai-3.0 Emotion" model is the world's third largest artificial intelligence model trained on EEG. It analyzes the person's emotional state.
12
+
13
+ ## NOTE: If you integrate the model into a real-time EEG data tracking application, it can predict emotions in real time. To access the application: https://github.com/neurazum/Realtime-EEG-Monitoring
14
+ **Doğruluk/Accuracy: %97,79549718574108**
15
+
16
+ ![](https://youtu.be/qUkId3S9W94)
17
+
18
+ # Kullanım / Usage
19
+
20
+ ```python
21
+ import numpy as np
22
+ import pandas as pd
23
+ from sklearn.preprocessing import StandardScaler
24
+ from tensorflow.keras.models import load_model
25
+ import matplotlib.pyplot as plt
26
+
27
+ model_path = 'model-path'
28
+
29
+ model = load_model(model_path)
30
+
31
+ model_name = model_path.split('/')[-1].split('.')[0]
32
+
33
+ plt.figure(figsize=(10, 6))
34
+ plt.title(f'Duygu Tahmini ({model_name}.2)')
35
+ plt.xlabel('Zaman')
36
+ plt.ylabel('Sınıf')
37
+ plt.legend(loc='upper right')
38
+ plt.grid(True)
39
+ plt.show()
40
+ model.summary()
41
+ ```
42
+
43
+ # Tahmin / Prediction
44
+
45
+ ```python
46
+ import numpy as np
47
+ import pandas as pd
48
+ from sklearn.preprocessing import StandardScaler
49
+ from tensorflow.keras.models import load_model
50
+
51
+ model_path = 'model-path'
52
+
53
+ model = load_model(model_path)
54
+
55
+ scaler = StandardScaler()
56
+
57
+ predictions = model.predict(X_new_reshaped)
58
+ predicted_labels = np.argmax(predictions, axis=1)
59
+
60
+ label_mapping = {'NEGATIVE': 0, 'NEUTRAL': 1, 'POSITIVE': 2}
61
+ label_mapping_reverse = {v: k for k, v in label_mapping.items()}
62
+
63
+ #new_input = np.array([[23, 465, 12, 9653] * 637])
64
+ new_input = np.random.rand(1, 2548) # 1 örnek ve 2548 özellik
65
+ new_input_scaled = scaler.fit_transform(new_input)
66
+ new_input_reshaped = new_input_scaled.reshape((new_input_scaled.shape[0], 1, new_input_scaled.shape[1]))
67
+
68
+ new_prediction = model.predict(new_input_reshaped)
69
+ predicted_label = np.argmax(new_prediction, axis=1)[0]
70
+ predicted_emotion = label_mapping_reverse[predicted_label]
71
+
72
+ if predicted_emotion == 'NEGATIVE':
73
+ predicted_emotion = 'Negatif'
74
+ elif predicted_emotion == 'NEUTRAL':
75
+ predicted_emotion = 'Nötr'
76
+ elif predicted_emotion == 'POSITIVE':
77
+ predicted_emotion = 'Pozitif'
78
+
79
+ print(f'Giriş Verileri: {new_input}')
80
+ print(f'Tahmin Edilen Duygu: {predicted_emotion}')
81
+ ```
82
+
83
+ # Python Sürümü / Python Version
84
+
85
+ ### 3.9 <=> 3.13
86
+
87
+ # Modüller / Modules
88
+
89
+ ```bash
90
+ matplotlib==3.8.0
91
+ matplotlib-inline==0.1.6
92
+ numpy==1.26.4
93
+ pandas==2.2.2
94
+ scikit-learn==1.3.1
95
+ tensorflow==2.15.0
96
  ```