bert-base-uncased-amazon_polarity

This model is a fine-tuned version of bert-base-uncased on the amazon_polarity dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2945
  • Accuracy: 0.9465

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1782000
  • training_steps: 17820000

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7155 0.0 2000 0.7060 0.4622
0.7054 0.0 4000 0.6925 0.5165
0.6842 0.0 6000 0.6653 0.6116
0.6375 0.0 8000 0.5721 0.7909
0.4671 0.0 10000 0.3238 0.8770
0.3403 0.0 12000 0.3692 0.8861
0.4162 0.0 14000 0.4560 0.8908
0.4728 0.0 16000 0.5071 0.8980
0.5111 0.01 18000 0.5204 0.9015
0.4792 0.01 20000 0.5193 0.9076
0.544 0.01 22000 0.4835 0.9133
0.4745 0.01 24000 0.4689 0.9170
0.4403 0.01 26000 0.4778 0.9177
0.4405 0.01 28000 0.4754 0.9163
0.4375 0.01 30000 0.4808 0.9175
0.4628 0.01 32000 0.4340 0.9244
0.4488 0.01 34000 0.4162 0.9265
0.4608 0.01 36000 0.4031 0.9271
0.4478 0.01 38000 0.4502 0.9253
0.4237 0.01 40000 0.4087 0.9279
0.4601 0.01 42000 0.4133 0.9269
0.4153 0.01 44000 0.4230 0.9306
0.4096 0.01 46000 0.4108 0.9301
0.4348 0.01 48000 0.4138 0.9309
0.3787 0.01 50000 0.4066 0.9324
0.4172 0.01 52000 0.4812 0.9206
0.3897 0.02 54000 0.4013 0.9325
0.3787 0.02 56000 0.3837 0.9344
0.4253 0.02 58000 0.3925 0.9347
0.3959 0.02 60000 0.3907 0.9353
0.4402 0.02 62000 0.3708 0.9341
0.4115 0.02 64000 0.3477 0.9361
0.3876 0.02 66000 0.3634 0.9373
0.4286 0.02 68000 0.3778 0.9378
0.422 0.02 70000 0.3540 0.9361
0.3732 0.02 72000 0.3853 0.9378
0.3641 0.02 74000 0.3951 0.9386
0.3701 0.02 76000 0.3582 0.9388
0.4498 0.02 78000 0.3268 0.9375
0.3587 0.02 80000 0.3825 0.9401
0.4474 0.02 82000 0.3155 0.9391
0.3598 0.02 84000 0.3666 0.9388
0.389 0.02 86000 0.3745 0.9377
0.3625 0.02 88000 0.3776 0.9387
0.3511 0.03 90000 0.4275 0.9336
0.3428 0.03 92000 0.4301 0.9336
0.4042 0.03 94000 0.3547 0.9359
0.3583 0.03 96000 0.3763 0.9396
0.3887 0.03 98000 0.3213 0.9412
0.3915 0.03 100000 0.3557 0.9409
0.3378 0.03 102000 0.3627 0.9418
0.349 0.03 104000 0.3614 0.9402
0.3596 0.03 106000 0.3834 0.9381
0.3519 0.03 108000 0.3560 0.9421
0.3598 0.03 110000 0.3485 0.9419
0.3642 0.03 112000 0.3754 0.9395
0.3477 0.03 114000 0.3634 0.9426
0.4202 0.03 116000 0.3071 0.9427
0.3656 0.03 118000 0.3155 0.9441
0.3709 0.03 120000 0.2923 0.9433
0.374 0.03 122000 0.3272 0.9441
0.3142 0.03 124000 0.3348 0.9444
0.3452 0.04 126000 0.3603 0.9436
0.3365 0.04 128000 0.3339 0.9434
0.3353 0.04 130000 0.3471 0.9450
0.343 0.04 132000 0.3508 0.9418
0.3174 0.04 134000 0.3753 0.9436
0.3009 0.04 136000 0.3687 0.9422
0.3785 0.04 138000 0.3818 0.9396
0.3199 0.04 140000 0.3291 0.9438
0.4049 0.04 142000 0.3372 0.9454
0.3435 0.04 144000 0.3315 0.9459
0.3814 0.04 146000 0.3462 0.9401
0.359 0.04 148000 0.3981 0.9361
0.3552 0.04 150000 0.3226 0.9469
0.345 0.04 152000 0.3731 0.9384
0.3228 0.04 154000 0.2956 0.9471
0.3637 0.04 156000 0.2869 0.9477
0.349 0.04 158000 0.3331 0.9430
0.3374 0.04 160000 0.4159 0.9340
0.3718 0.05 162000 0.3241 0.9459
0.315 0.05 164000 0.3544 0.9391
0.3215 0.05 166000 0.3311 0.9451
0.3464 0.05 168000 0.3682 0.9453
0.3495 0.05 170000 0.3193 0.9469
0.305 0.05 172000 0.4132 0.9389
0.3479 0.05 174000 0.3465 0.947
0.3537 0.05 176000 0.3277 0.9449

Framework versions

  • Transformers 4.10.2
  • Pytorch 1.7.1
  • Datasets 1.12.1
  • Tokenizers 0.10.3
Downloads last month
63
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train fabriceyhc/bert-base-uncased-amazon_polarity

Evaluation results