File size: 9,546 Bytes
8bd884c
 
 
 
2db3100
8bd884c
 
 
 
 
 
 
 
 
a061116
8bd884c
 
 
 
 
a061116
8bd884c
a061116
36abc4b
 
 
 
 
 
 
 
 
a061116
36abc4b
a061116
36abc4b
a061116
 
36abc4b
a061116
36abc4b
a061116
 
36abc4b
a061116
36abc4b
a061116
 
36abc4b
a061116
36abc4b
a061116
 
36abc4b
a061116
36abc4b
a061116
 
36abc4b
a061116
36abc4b
a061116
8bd884c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
---
license: apache-2.0
tags:
- generated_from_trainer
- sibyl
datasets:
- amazon_polarity
metrics:
- accuracy
model-index:
- name: bert-base-uncased-amazon_polarity
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: amazon_polarity
      type: amazon_polarity
      args: amazon_polarity
    metrics:
    - type: accuracy
      value: 0.94647
      name: Accuracy
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: amazon_polarity
      type: amazon_polarity
      config: amazon_polarity
      split: test
    metrics:
    - type: accuracy
      value: 0.9464875
      name: Accuracy
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWJlNTRjZTJmYzhkZjg5ODRiNzFjNTdlYjU2YWM0OWUwZThjYzQ5MzEyOTU5ODc5MGUxNzExY2JjMDFlNzY5YyIsInZlcnNpb24iOjF9.U2pOXRO2RQbAnEK41yejZ-1Q2HBjNcSs47sIKowwShv3ubkqxaz05zHKd3hAP0LngnBopCUU2pgE-n5CrddxCA
    - type: precision
      value: 0.9528844934702675
      name: Precision
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTUwNWRlOTI4N2JhNmNmZjdhNTEyNjE5ZjY5ODJiNmQ1YTZjYTJmMWUwZjAwMWM3Yzc2NTc3YTg3MjUzNDhjNyIsInZlcnNpb24iOjF9.s9eR5ggHkEm8xcqdKPFKwn1Agd3AIR3N-qGBsEYGTzymv-gV0UoVfgWEb_OPPyw4Juo8BWTuKCi3QDl95LthCw
    - type: recall
      value: 0.939425
      name: Recall
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDgyNjA1YWM2YTM0MTdhMjIwNjgyNzZiZjc1NDZlN2ZiN2YxYTk2NDFkOTFlMGFhNTA1ODA1ODlkNTU5ODM5MiIsInZlcnNpb24iOjF9.BWcLvPNo3m3xJugV8TuSEogw_nn93S9rF4CJejqWlRS7pZaAEJbMT1OqPTYc2EWhqXDKaGTQfBFcj4OPrwTbAQ
    - type: auc
      value: 0.9863499156250001
      name: AUC
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjlmYzczMDkxODIxNWY5OWIwZmQ5ODgwNjE0YjdkMzNmYmFhZmYxODFkNWYyYTI5MGJlNjE3YjRhZWIzNGZjMiIsInZlcnNpb24iOjF9.fEQVuJ6iXjjBDb8uJQnQJtqVcL1rOE3uhjaooCqZI0HwR_XXNF_n7cVPD8Csdn38MEMxH-WqVDc2BC8qJvyZDw
    - type: f1
      value: 0.9461068798388619
      name: F1
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMmRiOGE0YjQwY2NjOTQ5MTZjMGI0MjA0NmY3MDlmYWU0NDNhZDIzNTkyYTAwZmFkNjc5NWQyMTljOWNmM2JlNiIsInZlcnNpb24iOjF9.mbfVpAQpmBOzMrayIU1CWBmWCIiR8ZhwoGneYSK6l9uTfNQZLJRCYNy_uOxqlbvPWADmLkIaaC5ugABNHhNmDg
    - type: loss
      value: 0.2944573760032654
      name: loss
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODA4MjhjYmE0ZGIwMTNlMDQ3MDA3ZjQyZTkxMjUxNzkwMzhjMjI4MjAzZDA5YzhkYmE0ZjUwMWE1NTQxY2IxMiIsInZlcnNpb24iOjF9.GDfuvefTx8f5R0FLVRUQDfMUyze1XYwqyZM-l7XPDT5dvrJmt4mJu8RNkAELG71rgfk8XseFlXUDFCin0opzBg
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-uncased-amazon_polarity

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the amazon_polarity dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2945
- Accuracy: 0.9465

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1782000
- training_steps: 17820000

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 0.7155        | 0.0   | 2000   | 0.7060          | 0.4622   |
| 0.7054        | 0.0   | 4000   | 0.6925          | 0.5165   |
| 0.6842        | 0.0   | 6000   | 0.6653          | 0.6116   |
| 0.6375        | 0.0   | 8000   | 0.5721          | 0.7909   |
| 0.4671        | 0.0   | 10000  | 0.3238          | 0.8770   |
| 0.3403        | 0.0   | 12000  | 0.3692          | 0.8861   |
| 0.4162        | 0.0   | 14000  | 0.4560          | 0.8908   |
| 0.4728        | 0.0   | 16000  | 0.5071          | 0.8980   |
| 0.5111        | 0.01  | 18000  | 0.5204          | 0.9015   |
| 0.4792        | 0.01  | 20000  | 0.5193          | 0.9076   |
| 0.544         | 0.01  | 22000  | 0.4835          | 0.9133   |
| 0.4745        | 0.01  | 24000  | 0.4689          | 0.9170   |
| 0.4403        | 0.01  | 26000  | 0.4778          | 0.9177   |
| 0.4405        | 0.01  | 28000  | 0.4754          | 0.9163   |
| 0.4375        | 0.01  | 30000  | 0.4808          | 0.9175   |
| 0.4628        | 0.01  | 32000  | 0.4340          | 0.9244   |
| 0.4488        | 0.01  | 34000  | 0.4162          | 0.9265   |
| 0.4608        | 0.01  | 36000  | 0.4031          | 0.9271   |
| 0.4478        | 0.01  | 38000  | 0.4502          | 0.9253   |
| 0.4237        | 0.01  | 40000  | 0.4087          | 0.9279   |
| 0.4601        | 0.01  | 42000  | 0.4133          | 0.9269   |
| 0.4153        | 0.01  | 44000  | 0.4230          | 0.9306   |
| 0.4096        | 0.01  | 46000  | 0.4108          | 0.9301   |
| 0.4348        | 0.01  | 48000  | 0.4138          | 0.9309   |
| 0.3787        | 0.01  | 50000  | 0.4066          | 0.9324   |
| 0.4172        | 0.01  | 52000  | 0.4812          | 0.9206   |
| 0.3897        | 0.02  | 54000  | 0.4013          | 0.9325   |
| 0.3787        | 0.02  | 56000  | 0.3837          | 0.9344   |
| 0.4253        | 0.02  | 58000  | 0.3925          | 0.9347   |
| 0.3959        | 0.02  | 60000  | 0.3907          | 0.9353   |
| 0.4402        | 0.02  | 62000  | 0.3708          | 0.9341   |
| 0.4115        | 0.02  | 64000  | 0.3477          | 0.9361   |
| 0.3876        | 0.02  | 66000  | 0.3634          | 0.9373   |
| 0.4286        | 0.02  | 68000  | 0.3778          | 0.9378   |
| 0.422         | 0.02  | 70000  | 0.3540          | 0.9361   |
| 0.3732        | 0.02  | 72000  | 0.3853          | 0.9378   |
| 0.3641        | 0.02  | 74000  | 0.3951          | 0.9386   |
| 0.3701        | 0.02  | 76000  | 0.3582          | 0.9388   |
| 0.4498        | 0.02  | 78000  | 0.3268          | 0.9375   |
| 0.3587        | 0.02  | 80000  | 0.3825          | 0.9401   |
| 0.4474        | 0.02  | 82000  | 0.3155          | 0.9391   |
| 0.3598        | 0.02  | 84000  | 0.3666          | 0.9388   |
| 0.389         | 0.02  | 86000  | 0.3745          | 0.9377   |
| 0.3625        | 0.02  | 88000  | 0.3776          | 0.9387   |
| 0.3511        | 0.03  | 90000  | 0.4275          | 0.9336   |
| 0.3428        | 0.03  | 92000  | 0.4301          | 0.9336   |
| 0.4042        | 0.03  | 94000  | 0.3547          | 0.9359   |
| 0.3583        | 0.03  | 96000  | 0.3763          | 0.9396   |
| 0.3887        | 0.03  | 98000  | 0.3213          | 0.9412   |
| 0.3915        | 0.03  | 100000 | 0.3557          | 0.9409   |
| 0.3378        | 0.03  | 102000 | 0.3627          | 0.9418   |
| 0.349         | 0.03  | 104000 | 0.3614          | 0.9402   |
| 0.3596        | 0.03  | 106000 | 0.3834          | 0.9381   |
| 0.3519        | 0.03  | 108000 | 0.3560          | 0.9421   |
| 0.3598        | 0.03  | 110000 | 0.3485          | 0.9419   |
| 0.3642        | 0.03  | 112000 | 0.3754          | 0.9395   |
| 0.3477        | 0.03  | 114000 | 0.3634          | 0.9426   |
| 0.4202        | 0.03  | 116000 | 0.3071          | 0.9427   |
| 0.3656        | 0.03  | 118000 | 0.3155          | 0.9441   |
| 0.3709        | 0.03  | 120000 | 0.2923          | 0.9433   |
| 0.374         | 0.03  | 122000 | 0.3272          | 0.9441   |
| 0.3142        | 0.03  | 124000 | 0.3348          | 0.9444   |
| 0.3452        | 0.04  | 126000 | 0.3603          | 0.9436   |
| 0.3365        | 0.04  | 128000 | 0.3339          | 0.9434   |
| 0.3353        | 0.04  | 130000 | 0.3471          | 0.9450   |
| 0.343         | 0.04  | 132000 | 0.3508          | 0.9418   |
| 0.3174        | 0.04  | 134000 | 0.3753          | 0.9436   |
| 0.3009        | 0.04  | 136000 | 0.3687          | 0.9422   |
| 0.3785        | 0.04  | 138000 | 0.3818          | 0.9396   |
| 0.3199        | 0.04  | 140000 | 0.3291          | 0.9438   |
| 0.4049        | 0.04  | 142000 | 0.3372          | 0.9454   |
| 0.3435        | 0.04  | 144000 | 0.3315          | 0.9459   |
| 0.3814        | 0.04  | 146000 | 0.3462          | 0.9401   |
| 0.359         | 0.04  | 148000 | 0.3981          | 0.9361   |
| 0.3552        | 0.04  | 150000 | 0.3226          | 0.9469   |
| 0.345         | 0.04  | 152000 | 0.3731          | 0.9384   |
| 0.3228        | 0.04  | 154000 | 0.2956          | 0.9471   |
| 0.3637        | 0.04  | 156000 | 0.2869          | 0.9477   |
| 0.349         | 0.04  | 158000 | 0.3331          | 0.9430   |
| 0.3374        | 0.04  | 160000 | 0.4159          | 0.9340   |
| 0.3718        | 0.05  | 162000 | 0.3241          | 0.9459   |
| 0.315         | 0.05  | 164000 | 0.3544          | 0.9391   |
| 0.3215        | 0.05  | 166000 | 0.3311          | 0.9451   |
| 0.3464        | 0.05  | 168000 | 0.3682          | 0.9453   |
| 0.3495        | 0.05  | 170000 | 0.3193          | 0.9469   |
| 0.305         | 0.05  | 172000 | 0.4132          | 0.9389   |
| 0.3479        | 0.05  | 174000 | 0.3465          | 0.947    |
| 0.3537        | 0.05  | 176000 | 0.3277          | 0.9449   |


### Framework versions

- Transformers 4.10.2
- Pytorch 1.7.1
- Datasets 1.12.1
- Tokenizers 0.10.3