Librarian Bot: Add base_model information to model
Browse filesThis pull request aims to enrich the metadata of your model by adding [`bert-base-uncased`](https://huggingface.co/bert-base-uncased) as a `base_model` field, situated in the `YAML` block of your model's `README.md`.
How did we find this information? We performed a regular expression match on your `README.md` file to determine the connection.
**Why add this?** Enhancing your model's metadata in this way:
- **Boosts Discoverability** - It becomes straightforward to trace the relationships between various models on the Hugging Face Hub.
- **Highlights Impact** - It showcases the contributions and influences different models have within the community.
For a hands-on example of how such metadata can play a pivotal role in mapping model connections, take a look at [librarian-bots/base_model_explorer](https://huggingface.co/spaces/librarian-bots/base_model_explorer).
This PR comes courtesy of [Librarian Bot](https://huggingface.co/librarian-bot). If you have any feedback, queries, or need assistance, please don't hesitate to reach out to [@davanstrien](https://huggingface.co/davanstrien). Your input is invaluable to us!
@@ -7,20 +7,21 @@ datasets:
|
|
7 |
- amazon_polarity
|
8 |
metrics:
|
9 |
- accuracy
|
|
|
10 |
model-index:
|
11 |
- name: bert-base-uncased-amazon_polarity
|
12 |
results:
|
13 |
- task:
|
14 |
-
name: Text Classification
|
15 |
type: text-classification
|
|
|
16 |
dataset:
|
17 |
name: amazon_polarity
|
18 |
type: amazon_polarity
|
19 |
args: amazon_polarity
|
20 |
metrics:
|
21 |
-
-
|
22 |
-
type: accuracy
|
23 |
value: 0.94647
|
|
|
24 |
- task:
|
25 |
type: text-classification
|
26 |
name: Text Classification
|
@@ -30,29 +31,29 @@ model-index:
|
|
30 |
config: amazon_polarity
|
31 |
split: test
|
32 |
metrics:
|
33 |
-
-
|
34 |
-
type: accuracy
|
35 |
value: 0.9464875
|
|
|
36 |
verified: true
|
37 |
-
-
|
38 |
-
type: precision
|
39 |
value: 0.9528844934702675
|
|
|
40 |
verified: true
|
41 |
-
-
|
42 |
-
type: recall
|
43 |
value: 0.939425
|
|
|
44 |
verified: true
|
45 |
-
-
|
46 |
-
type: auc
|
47 |
value: 0.9863499156250001
|
|
|
48 |
verified: true
|
49 |
-
-
|
50 |
-
type: f1
|
51 |
value: 0.9461068798388619
|
|
|
52 |
verified: true
|
53 |
-
-
|
54 |
-
type: loss
|
55 |
value: 0.2944573760032654
|
|
|
56 |
verified: true
|
57 |
---
|
58 |
|
|
|
7 |
- amazon_polarity
|
8 |
metrics:
|
9 |
- accuracy
|
10 |
+
base_model: bert-base-uncased
|
11 |
model-index:
|
12 |
- name: bert-base-uncased-amazon_polarity
|
13 |
results:
|
14 |
- task:
|
|
|
15 |
type: text-classification
|
16 |
+
name: Text Classification
|
17 |
dataset:
|
18 |
name: amazon_polarity
|
19 |
type: amazon_polarity
|
20 |
args: amazon_polarity
|
21 |
metrics:
|
22 |
+
- type: accuracy
|
|
|
23 |
value: 0.94647
|
24 |
+
name: Accuracy
|
25 |
- task:
|
26 |
type: text-classification
|
27 |
name: Text Classification
|
|
|
31 |
config: amazon_polarity
|
32 |
split: test
|
33 |
metrics:
|
34 |
+
- type: accuracy
|
|
|
35 |
value: 0.9464875
|
36 |
+
name: Accuracy
|
37 |
verified: true
|
38 |
+
- type: precision
|
|
|
39 |
value: 0.9528844934702675
|
40 |
+
name: Precision
|
41 |
verified: true
|
42 |
+
- type: recall
|
|
|
43 |
value: 0.939425
|
44 |
+
name: Recall
|
45 |
verified: true
|
46 |
+
- type: auc
|
|
|
47 |
value: 0.9863499156250001
|
48 |
+
name: AUC
|
49 |
verified: true
|
50 |
+
- type: f1
|
|
|
51 |
value: 0.9461068798388619
|
52 |
+
name: F1
|
53 |
verified: true
|
54 |
+
- type: loss
|
|
|
55 |
value: 0.2944573760032654
|
56 |
+
name: loss
|
57 |
verified: true
|
58 |
---
|
59 |
|