Ascites Segmentation with nnUNet
This model was trained as part of the research 'Deep Learning Segmentation of Ascites on Abdominal CT Scans for Automatic Volume Quantification' (Paper, arXiv).
Method 1: Run Inference using nnunet_predict.py
user@machine:~/ascites_segmentation$ pip install torch torchvision torchaudio nnunet matplotlib
- Run inference with command:
user@machine:~/ascites_segmentation$ python nnunet_predict.py -i file_list.txt -t TMP_DIR -o OUTPUT_FOLDER -m /path/to/nnunet/model_weights
usage: tmp.py [-h] [-i INPUT_LIST] -t TMP_FOLDER -o OUTPUT_FOLDER -m MODEL [-v]
Inference using nnU-Net predict_from_folder Python API
optional arguments:
-h, --help show this help message and exit
-i INPUT_LIST, --input_list INPUT_LIST
Input image file_list.txt
-t TMP_FOLDER, --tmp_folder TMP_FOLDER
Temporary folder
-o OUTPUT_FOLDER, --output_folder OUTPUT_FOLDER
Output Segmentation folder
-m MODEL, --model MODEL
Trained Model
-v, --verbose Verbose Output
N.B.
model_weights
folder should containfold0
,fold1
, etc...- WARNING: the program will try to create file links first, but will fallback to filecopy if fails
Method 2: Run Inference using nnUNet_predict
from shell
user@machine:~/ascites_segmentation$ pip install torch torchvision torchaudio nnunet matplotlib
- Setup environment variables so that nnU-Net knows where to find trained models:
user@machine:~/ascites_segmentation$ export nnUNet_raw_data_base="/absolute/path/to/nnUNet_raw_data_base"
user@machine:~/ascites_segmentation$ export nnUNet_preprocessed="/absolute/path/to/nnUNet_preprocessed"
user@machine:~/ascites_segmentation$ export RESULTS_FOLDER="/absolute/path/to/nnUNet_trained_models"
- Run inference with command:
user@machine:~/ascites_segmentation$ nnUNet_predict -i INPUT_FOLDER -o OUTPUT_FOLDER -t 505 -m 3d_fullres -f N --save_npz
where:
-i
: input folder of.nii.gz
scans to predict. NB, filename needs to end with_0000.nii.gz
to tell nnU-Net only one kind of modality-o
: output folder to store predicted segmentations, automatically created if not exist-t 505
: (do not change) Ascites pretrained model name-m 3d_fullres
(do not change) Ascites pretrained model nameN
: Ascites pretrained model fold, can be[0, 1, 2, 3, 4]
--save_npz
: save softmax scores, required for ensembling multiple folds
Optional [Additional] Inference Steps
a. use nnUNet_find_best_configuration
to automatically get the inference commands needed to run the trained model on data.
b. ensemble predictions using nnUNet_ensemble
by running:
user@machine:~/ascites_segmentation$ nnUNet_ensemble -f FOLDER1 FOLDER2 ... -o OUTPUT_FOLDER -pp POSTPROCESSING_FILE
where FOLDER1
and FOLDER2
are predicted outputs by nnUNet (requires --save_npz
when running nnUNet_predict
).
Method 3: Docker Inference
Requires nvidia-docker
to be installed on the system (Installation Guide). This nnunet_docker
predicts ascites with all 5 trained folds and ensembles output to a single prediction.
- Build the
nnunet_docker
image fromDockerfile
:
user@machine:~/ascites_segmentation$ sudo docker build -t nnunet_docker .
- Run docker image on test volumes:
user@machine:~/ascites_segmentation$ sudo docker run \
--gpus 0 \
--volume /absolute/path/to/INPUT_FOLDER:/tmp/INPUT_FOLDER \
--volume /absolute/path/to/OUTPUT_FOLDER:/tmp/OUTPUT_FOLDER \
nnunet_docker /bin/sh inference.sh
--gpus
parameter:0, 1, 2, ..., n
for integer number of GPUsall
for all available GPUs on the system'"device=2,3"'
for specific GPU with ID
--volume
parameter/absolute/path/to/INPUT_FOLDER
and/absolute/path/to/OUTPUT_FOLDER
folders on the host system needs to be specifiedINPUT_FOLDER
contains all.nii.gz
volumes to be predicted- predicted results will be written to
OUTPUT_FOLDER
Citation
If you find this repository helpful in your research, please consider citing our paper:
@article{hou2024deep,
title={Deep Learning Segmentation of Ascites on Abdominal CT Scans for Automatic Volume Quantification},
author={Hou, Benjamin and Lee, Sung-Won and Lee, Jung-Min and Koh, Christopher and Xiao, Jing and Pickhardt, Perry J. and Summers, Ronald M.}
journal={Radiology: Artificial Intelligence},
pages={e230601},
year={2024},
publisher={Radiological Society of North America}
}