farrell236 commited on
Commit
686cf88
β€’
1 Parent(s): 0db6a31

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -41
README.md CHANGED
@@ -6,7 +6,7 @@ license: mit
6
 
7
  ## Method 1: Run Inference using `nnunet_predict.py`
8
 
9
- 1. Install the latest version of [nnUNet](https://github.com/MIC-DKFZ/nnUNet#installation) and [PyTorch](https://pytorch.org/get-started/locally/).
10
 
11
  ```shell
12
  user@machine:~/ascites_segmentation$ pip install torch torchvision torchaudio nnunet matplotlib
@@ -45,50 +45,13 @@ N.B.
45
 
46
  ## Method 2: Run Inference using `nnUNet_predict` from shell
47
 
48
- 1. Install the latest version of [nnUNet](https://github.com/MIC-DKFZ/nnUNet#installation) and [PyTorch](https://pytorch.org/get-started/locally/).
49
 
50
  ```shell
51
  user@machine:~/ascites_segmentation$ pip install torch torchvision torchaudio nnunet matplotlib
52
  ```
53
 
54
- 2. Place checkpoints in directory tree:
55
-
56
- ```shell
57
- user@machine:~/ascites_segmentation$ tree .
58
- .
59
- β”œβ”€β”€ nnUNet_preprocessed
60
- β”œβ”€β”€ nnUNet_raw_data_base
61
- └── nnUNet_trained_models
62
- └── nnUNet
63
- └── 3d_fullres
64
- └── Task505_TCGA-OV
65
- └── nnUNetTrainerV2__nnUNetPlansv2.1
66
- β”œβ”€β”€ fold_0
67
- β”‚ β”œβ”€β”€ debug.json
68
- β”‚ β”œβ”€β”€ model_final_checkpoint.model
69
- β”‚ β”œβ”€β”€ model_final_checkpoint.model.pkl
70
- β”‚ └── progress.png
71
- β”œβ”€β”€ fold_1
72
- β”‚ β”œβ”€β”€ debug.json
73
- β”‚ β”œβ”€β”€ model_final_checkpoint.model
74
- β”‚ β”œβ”€β”€ model_final_checkpoint.model.pkl
75
- β”‚ └── progress.png
76
- β”œβ”€β”€ fold_2
77
- β”‚ β”œβ”€β”€ model_final_checkpoint.model
78
- β”‚ β”œβ”€β”€ model_final_checkpoint.model.pkl
79
- β”‚ └── progress.png
80
- β”œβ”€β”€ fold_3
81
- β”‚ β”œβ”€β”€ model_final_checkpoint.model
82
- β”‚ β”œβ”€β”€ model_final_checkpoint.model.pkl
83
- β”‚ └── progress.png
84
- β”œβ”€β”€ fold_4
85
- β”‚ β”œβ”€β”€ model_final_checkpoint.model
86
- β”‚ β”œβ”€β”€ model_final_checkpoint.model.pkl
87
- β”‚ └── progress.png
88
- └── plans.pkl
89
- ```
90
-
91
- 3. Setup environment variables so that nnU-Net knows where to find trained models:
92
 
93
  ```shell
94
  user@machine:~/ascites_segmentation$ export nnUNet_raw_data_base="/absolute/path/to/nnUNet_raw_data_base"
@@ -96,7 +59,7 @@ user@machine:~/ascites_segmentation$ export nnUNet_preprocessed="/absolute/path/
96
  user@machine:~/ascites_segmentation$ export RESULTS_FOLDER="/absolute/path/to/nnUNet_trained_models"
97
  ```
98
 
99
- 4. Run inference with command:
100
 
101
  ```shell
102
  user@machine:~/ascites_segmentation$ nnUNet_predict -i INPUT_FOLDER -o OUTPUT_FOLDER -t 505 -m 3d_fullres -f N --save_npz
 
6
 
7
  ## Method 1: Run Inference using `nnunet_predict.py`
8
 
9
+ 1. Install [nnUNet_v1](https://github.com/MIC-DKFZ/nnUNet/tree/nnunetv1#installation) and [PyTorch](https://pytorch.org/get-started/locally/).
10
 
11
  ```shell
12
  user@machine:~/ascites_segmentation$ pip install torch torchvision torchaudio nnunet matplotlib
 
45
 
46
  ## Method 2: Run Inference using `nnUNet_predict` from shell
47
 
48
+ 1. Install [nnUNet_v1](https://github.com/MIC-DKFZ/nnUNet/tree/nnunetv1#installation) and [PyTorch](https://pytorch.org/get-started/locally/).
49
 
50
  ```shell
51
  user@machine:~/ascites_segmentation$ pip install torch torchvision torchaudio nnunet matplotlib
52
  ```
53
 
54
+ 2. Setup environment variables so that nnU-Net knows where to find trained models:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
  ```shell
57
  user@machine:~/ascites_segmentation$ export nnUNet_raw_data_base="/absolute/path/to/nnUNet_raw_data_base"
 
59
  user@machine:~/ascites_segmentation$ export RESULTS_FOLDER="/absolute/path/to/nnUNet_trained_models"
60
  ```
61
 
62
+ 3. Run inference with command:
63
 
64
  ```shell
65
  user@machine:~/ascites_segmentation$ nnUNet_predict -i INPUT_FOLDER -o OUTPUT_FOLDER -t 505 -m 3d_fullres -f N --save_npz