farrell236
commited on
Commit
β’
686cf88
1
Parent(s):
0db6a31
Update README.md
Browse files
README.md
CHANGED
@@ -6,7 +6,7 @@ license: mit
|
|
6 |
|
7 |
## Method 1: Run Inference using `nnunet_predict.py`
|
8 |
|
9 |
-
1. Install
|
10 |
|
11 |
```shell
|
12 |
user@machine:~/ascites_segmentation$ pip install torch torchvision torchaudio nnunet matplotlib
|
@@ -45,50 +45,13 @@ N.B.
|
|
45 |
|
46 |
## Method 2: Run Inference using `nnUNet_predict` from shell
|
47 |
|
48 |
-
1. Install
|
49 |
|
50 |
```shell
|
51 |
user@machine:~/ascites_segmentation$ pip install torch torchvision torchaudio nnunet matplotlib
|
52 |
```
|
53 |
|
54 |
-
2.
|
55 |
-
|
56 |
-
```shell
|
57 |
-
user@machine:~/ascites_segmentation$ tree .
|
58 |
-
.
|
59 |
-
βββ nnUNet_preprocessed
|
60 |
-
βββ nnUNet_raw_data_base
|
61 |
-
βββ nnUNet_trained_models
|
62 |
-
βββ nnUNet
|
63 |
-
βββ 3d_fullres
|
64 |
-
βββ Task505_TCGA-OV
|
65 |
-
βββ nnUNetTrainerV2__nnUNetPlansv2.1
|
66 |
-
βββ fold_0
|
67 |
-
β βββ debug.json
|
68 |
-
β βββ model_final_checkpoint.model
|
69 |
-
β βββ model_final_checkpoint.model.pkl
|
70 |
-
β βββ progress.png
|
71 |
-
βββ fold_1
|
72 |
-
β βββ debug.json
|
73 |
-
β βββ model_final_checkpoint.model
|
74 |
-
β βββ model_final_checkpoint.model.pkl
|
75 |
-
β βββ progress.png
|
76 |
-
βββ fold_2
|
77 |
-
β βββ model_final_checkpoint.model
|
78 |
-
β βββ model_final_checkpoint.model.pkl
|
79 |
-
β βββ progress.png
|
80 |
-
βββ fold_3
|
81 |
-
β βββ model_final_checkpoint.model
|
82 |
-
β βββ model_final_checkpoint.model.pkl
|
83 |
-
β βββ progress.png
|
84 |
-
βββ fold_4
|
85 |
-
β βββ model_final_checkpoint.model
|
86 |
-
β βββ model_final_checkpoint.model.pkl
|
87 |
-
β βββ progress.png
|
88 |
-
βββ plans.pkl
|
89 |
-
```
|
90 |
-
|
91 |
-
3. Setup environment variables so that nnU-Net knows where to find trained models:
|
92 |
|
93 |
```shell
|
94 |
user@machine:~/ascites_segmentation$ export nnUNet_raw_data_base="/absolute/path/to/nnUNet_raw_data_base"
|
@@ -96,7 +59,7 @@ user@machine:~/ascites_segmentation$ export nnUNet_preprocessed="/absolute/path/
|
|
96 |
user@machine:~/ascites_segmentation$ export RESULTS_FOLDER="/absolute/path/to/nnUNet_trained_models"
|
97 |
```
|
98 |
|
99 |
-
|
100 |
|
101 |
```shell
|
102 |
user@machine:~/ascites_segmentation$ nnUNet_predict -i INPUT_FOLDER -o OUTPUT_FOLDER -t 505 -m 3d_fullres -f N --save_npz
|
|
|
6 |
|
7 |
## Method 1: Run Inference using `nnunet_predict.py`
|
8 |
|
9 |
+
1. Install [nnUNet_v1](https://github.com/MIC-DKFZ/nnUNet/tree/nnunetv1#installation) and [PyTorch](https://pytorch.org/get-started/locally/).
|
10 |
|
11 |
```shell
|
12 |
user@machine:~/ascites_segmentation$ pip install torch torchvision torchaudio nnunet matplotlib
|
|
|
45 |
|
46 |
## Method 2: Run Inference using `nnUNet_predict` from shell
|
47 |
|
48 |
+
1. Install [nnUNet_v1](https://github.com/MIC-DKFZ/nnUNet/tree/nnunetv1#installation) and [PyTorch](https://pytorch.org/get-started/locally/).
|
49 |
|
50 |
```shell
|
51 |
user@machine:~/ascites_segmentation$ pip install torch torchvision torchaudio nnunet matplotlib
|
52 |
```
|
53 |
|
54 |
+
2. Setup environment variables so that nnU-Net knows where to find trained models:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
```shell
|
57 |
user@machine:~/ascites_segmentation$ export nnUNet_raw_data_base="/absolute/path/to/nnUNet_raw_data_base"
|
|
|
59 |
user@machine:~/ascites_segmentation$ export RESULTS_FOLDER="/absolute/path/to/nnUNet_trained_models"
|
60 |
```
|
61 |
|
62 |
+
3. Run inference with command:
|
63 |
|
64 |
```shell
|
65 |
user@machine:~/ascites_segmentation$ nnUNet_predict -i INPUT_FOLDER -o OUTPUT_FOLDER -t 505 -m 3d_fullres -f N --save_npz
|