farrell236 commited on
Commit
af7f0f4
1 Parent(s): c47d74e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -3
README.md CHANGED
@@ -1,9 +1,12 @@
1
  ---
2
- license: mit
 
3
  ---
4
 
5
  # Ascites Segmentation with nnUNet
6
 
 
 
7
  ## Method 1: Run Inference using `nnunet_predict.py`
8
 
9
  1. Install [nnUNet_v1](https://github.com/MIC-DKFZ/nnUNet/tree/nnunetv1#installation) and [PyTorch](https://pytorch.org/get-started/locally/).
@@ -105,8 +108,6 @@ user@machine:~/ascites_segmentation$ sudo docker run \
105
  nnunet_docker /bin/sh inference.sh
106
  ```
107
 
108
-
109
-
110
  - `--gpus` parameter:
111
  - `0, 1, 2, ..., n` for integer number of GPUs
112
  - `all` for all available GPUs on the system
@@ -117,3 +118,17 @@ nnunet_docker /bin/sh inference.sh
117
  - `INPUT_FOLDER` contains all `.nii.gz` volumes to be predicted
118
  - predicted results will be written to `OUTPUT_FOLDER`
119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: AscitesModel
3
+ license: cc-by-nc-sa-4.0
4
  ---
5
 
6
  # Ascites Segmentation with nnUNet
7
 
8
+ This model was trained as part of the research 'Deep Learning Segmentation of Ascites on Abdominal CT Scans for Automatic Volume Quantification' ([Paper](https://doi.org/10.1148/ryai.230601), [arXiv](https://arxiv.org/abs/2406.15979)).
9
+
10
  ## Method 1: Run Inference using `nnunet_predict.py`
11
 
12
  1. Install [nnUNet_v1](https://github.com/MIC-DKFZ/nnUNet/tree/nnunetv1#installation) and [PyTorch](https://pytorch.org/get-started/locally/).
 
108
  nnunet_docker /bin/sh inference.sh
109
  ```
110
 
 
 
111
  - `--gpus` parameter:
112
  - `0, 1, 2, ..., n` for integer number of GPUs
113
  - `all` for all available GPUs on the system
 
118
  - `INPUT_FOLDER` contains all `.nii.gz` volumes to be predicted
119
  - predicted results will be written to `OUTPUT_FOLDER`
120
 
121
+ ## Citation
122
+
123
+ If you find this repository helpful in your research, please consider citing our paper:
124
+
125
+ ```text
126
+ @article{hou2024deep,
127
+ title={Deep Learning Segmentation of Ascites on Abdominal CT Scans for Automatic Volume Quantification},
128
+ author={Hou, Benjamin and Lee, Sung-Won and Lee, Jung-Min and Koh, Christopher and Xiao, Jing and Pickhardt, Perry J. and Summers, Ronald M.}
129
+ journal={Radiology: Artificial Intelligence},
130
+ pages={e230601},
131
+ year={2024},
132
+ publisher={Radiological Society of North America}
133
+ }
134
+ ```