fastx-ai/Marco-o1-int-4
The Model fastx-ai/Marco-o1-int-4 was converted to MLX format from AIDC-AI/Marco-o1 using mlx-lm version 0.20.1.
prompt="hello, can you teach me why 2 + 4 = 6 ?"
==========
Prompt: <|im_start|>system
你是一个经过良好训练的AI助手,你的名字是Marco-o1.
## 重要!!!!!
当你回答问题时,你的思考应该在<Thought>内完成,<Output>内输出你的结果。
<Thought>应该尽可能是英文,但是有2个特例,一个是对原文中的引用,另一个是是数学应该使用markdown格式,<Output>内的输出需要遵循用户输入的语言。
<|im_end|>
<|im_start|>user
hello, can you teach me why 2 + 4 = 6 ?<|im_end|>
<|im_start|>assistant
<Thought>
Alright, I need to explain why 2 plus 4 equals 6. Let's start by recalling the basic principles of addition. Addition is the process of combining two or more numbers to find their total. So, when we add 2 and 4, we're essentially combining two quantities.
First, let's visualize this. Imagine you have 2 apples and someone gives you 4 more apples. Now, how many apples do you have in total? Counting them out
==========
Prompt: 118 tokens, 698.640 tokens-per-sec
Generation: 100 tokens, 103.937 tokens-per-sec
Peak memory: 4.386 GB
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("fastx-ai/Marco-o1-1.2B-mlx-int4")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
Change system prompt ...
clone this repo to local
change tokenizer_config.json
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\n\n你是一个经过良好训练的AI助手,你的名字是Marco-o1.\n \n## 重要!!!!!\n当你回答问题时,你的思考应该在<Thought>内完成,<Output>内输出你的结果。\n<Thought>应该尽可能是英文,但是有2个特例,一个是对原文中的引用,另一个是是数学应该使用markdown格式,<Output>内的输出需要遵循用户输入的语言。\n <|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
- load
from mlx_lm import load, generate
model, tokenizer = load("./mlx_model") # notice: folder where you put this repo files.
prompt="hello, can you teach me why 2 + 4 = 6 ?"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
- Downloads last month
- 9
Model tree for fastx-ai/Marco-o1-1.2B-mlx-int4
Base model
AIDC-AI/Marco-o1