BLIP-Image-to-recip
Inference code
import requests from PIL import Image
from transformers import BlipForConditionalGeneration, AutoProcessor
img_url = 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSQuFg4LTHUattLGPU0kLzYpBGHRtuqgJY8Gho3uZe_cg&s' image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
model = BlipForConditionalGeneration.from_pretrained("Fatehmujtaba/BLIP-Image-to-recipe").to(device) processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
inputs = processor(images=image, return_tensors="pt").to(device) pixel_values = inputs.pixel_values generated_ids = model.generate(pixel_values=pixel_values, max_length=50) generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.