BLIP-Image-to-recip

Inference code


import requests from PIL import Image

from transformers import BlipForConditionalGeneration, AutoProcessor

img_url = 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSQuFg4LTHUattLGPU0kLzYpBGHRtuqgJY8Gho3uZe_cg&s' image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')

model = BlipForConditionalGeneration.from_pretrained("Fatehmujtaba/BLIP-Image-to-recipe").to(device) processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")

inputs = processor(images=image, return_tensors="pt").to(device) pixel_values = inputs.pixel_values generated_ids = model.generate(pixel_values=pixel_values, max_length=50) generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]


Downloads last month
11
Safetensors
Model size
247M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.